# ПРОБЛЕМЫ ЛИТОЛОГИИ МИРОВОГО ОКЕАНА

DTH

Минералогия и геохимия Тихого океана

ИЗДАТЕЛЬСТВО •НАУКА•

11-1483 6.398

#### АКАДЕМИЯ НАУК СССР

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ГЕОЛОГИЧЕСКИЙ ИНСТИТУТ

### ПРОБЛЕМЫ ЛИТОЛОГИИ МИРОВОГО ОКЕАНА

## Минералогия и геохимия Тихого океана

Труды, вып. 398



М О С К В А "НАУКА" 1985 -----

\_ ....

#### Academy of Science of the USSR

Order of the Red Banner of Labour Geological Institute

PROBLEMS OF LITHOLOGY OF THE WORLD OCEAN

Mineralogy and Geochemistry of the Pacific Ocean

Transactions, vol. 398

Проблемы литологии Мирового океана. Минералогия и геохимия Тихого океана/П.П. Тимофеев, И.М. Варенцов, М.А. Ратеев, Б.А. Сахаров, Д.Я. Чопоров, В.А. Александрова, Л.И. Боголюбова, В.А. Дриц, В.В. Еремеев, Б.П. Золотарев, Н.В. Ренгартен, С.И. Ципурский. — М.: Наука, 1985. (Труды/ГИН АН СССР; Вып. 398).

Монография содержит результаты изучения минералогии и геохимии мезозойских и кайнозойских отложений Тихого океана по материалам глубоководного бурения "Гломара Челленджера". Особое внимание обращено на вопросы геохимической истории постюрской седиментации для центральной области северо-западной части Тихого океана, особенности ее основных этапов: раннемелового (протоокеанского), позднемелового (переходного) и кайнозойского (собственно океанского), а также на гидротермальные накопления в зоне Галапагосского рифта.

Табл. 43, ил. 83 + 8 фототабл., библиогр.: с. 212-215 (106 назв.)

Редакционная коллегия:

академик А.В. Пейве (главный редактор), член-корреспондент АН СССР П.П. Тимофеев, В.Г. Гербова, В.А. Крашенинников

#### Ответственный редактор член-корреспондент АН СССР П.П. Тимофеев

The results of mineralogical and geochemical studies of Mesozoic and Cenozoic deposits of the Pacific Ocean performed within the Deep Sea Drilling Project are presented. Special attention was paid on the aspects of geochemical history of post-Jurassic sedimentation in the Central Northwestern Pacific. The detailed characteristics of geochemical features of the main stages of sedimentary evolution are given: early Cretaceons (protooceanic), late Cretaceons (transitional) and Cenozoic (properly oceanic). The results of mineralogical and geochemical studies of hydrothermal deposits in the Galapagos Rift are given.

Editorial Board

Academician A.V. Peive (Editor-in-Chief) Corresponding Member of Academy of Sciences of the USSR P.P. Timofeef, V.G. Gerbova, V.A. Krasheninnikov

#### **Responsible Editor**

Corresponding Member of Academy of Sciences of the USSR P.P. Timofeev

In 1904040000-044 042 (02) -85 159-85−1 © Издательство "Наука", 1985 г.

#### ПРЕДИСЛОВИЕ

Минералогическим и геохимическим исследованиям принадлежит основополагающее значение в познании геохимической истории океанской седиментации в течение мезозоя и кайнозоя. Эти работы, проводимые на базе литолого-фациального анализа, позволяют оценить эволюцию во времени важнейших геологических факторов, зарегистрированных в составе и строении отложений: изменения глубин и очертаний бассейнов, вариации в океанской и атмосферной циркуляции, роль биологической продуктивности и вулканических процессов, относительную высоту стояния континентов и соответственно поступление и распределение континентального стока, изменения уровня моря и глобальные климатические перемены. Решение этих вопросов возможно на основе детального изучения ключевых разрезов отложений главнейших структурных зон Мирового океана.

В монографии приводятся результаты исследований минералогии и геохимии постюрских отложений Тихого океана (рис. 1), наиболее сложного по геологическому строению и истории развития в системе Мирового океана и сравнительно слабо изученного. Значительное место в монографии занимают исследования геохимической истории постюрской седиментации в центральной области северо-западной части Тихого океана районе гор Маркус-Неккер и возвышенности Хесса (62-й рейс "Гломара Челленджера").

Относительная полнота разрезов отложений мезозоя и кайнозоя позволила провести детальное изучение геохимической эволюции осадкообразования. Установлено, что в течение раннемелового (протоокеанского) этапа седиментации накапливались относительно мелководные карбонатные осадки, обогащенные основным вулканогенным материалом. Начальным фазам этого этапа свойственна максимальная вулканическая активность, проявлявшаяся в обстановке ограниченных стагнированных котловинных бассейнов, в которых с высокими скоростями накапливались туфогенные карбонатные осадки с относительно большим содержанием сапропелевого материала и растительного детрита. Геохронологическая продолжительность этого этапа для исследованных районов различна: от позднего баррема – позднего альба (западная часть гор Маркус-Неккер) до позднего альба — позднего сеномана (южная часть возвышенности Хесса). Позднемеловой переходный этап характеризуется переходным режимом седиментации и соответствующими геохимическими параметрами. Накапливались преимущественно наннофоссилиевые осадки в пелагической обстановке низких широт открытого океана. В течение кайн озойского (собственно океанского) этапа отлагались пелагические наннофоссилиевые осадки с типичными для открытого океана концентрациями и скоростями аккумуляции Fe, Mn, тяжелых металлов и рассеянных элементов. Характерны многочисленные эрозионные перерывы. В плиоцене-плейстоцене отмечается усиление островного вулканизма.

Материалы, опубликованные в предыдущих трех томах этой монографической серии, убедительно свидетельствуют о том, что намеченные этапы геохимической истории седиментации в мезозое и кайнозое характерны и для большинства бассейнов Мирового океана; они отражают четко выраженную эволюционную направленность в мезозойско-кайнозойской истории океанского сегмента Земли.

Существенное научное и практическое значение представляют исследования минералогии и геохимии гидротермальных накоплений в зоне Галапагосского рифта и



Рис. 1. Схема расположения скважин 62, 65 и 70-го рейсов

прилегающих участков гидротермальных холмов (70-й рейс). Сочетание прецизионных методов изучения минерального состава осадков (рентгеновская дифрактометрия, электронография, исследования под сканирующим и просвечивающим электронными микроскопоми) и анализа геохимических характеристик позволило выявить динамику гидротермального минералообразования в течение плейстоцена, показать соотношение гидротермального и пелагического, главным образом биогенного, осадкообразования. Установлено, что зеленые глины, слагающие основную часть гидротермальных холмов и представленные смешаннослойной фазой селадонит-нонтронит, формировались в течение относительно высокотемпературного этапа. Гидроокислы марганца (главным образом тодорокит) и ассоциирующие с ними элементы накапливались, выделяясь из относительно низкотемпературных остаточных гидротермальных растворов после отделения железа и связанных с ним компонентов.

Эти результаты, полученные на основе детальных исследований весьма достоверного фактического материала, убедительно освещают проблему формирования гидротермальных металлоносных осадков Мирового океана.

Важно отметить, что зона Галапагосского рифта как относительно молодая и активная часть Восточно-Тихоокеанского поднятия является районом напряженной гидротермальной деятельности. На примере этого модельного объекта можно сравнительно полно исследовать основные движущие силы гидротермальной системы, особенности ее природы, характер продуктов и влияние на состав океанских вод и пелагическую седиментацию. Изучение химизма, минерального состава гидротермальных накоплений и карбонатно-кремнистых биогенных осадков позволяет проследить процесс гидротермально-осадочного минералообразования от начальных моментов до поздних стадий функционирования гидротермальной системы. Чрезвычайно существенно, что проводившееся в течение последних двух-трех десятилетий широкое комплексное изучение гидротермальных систем в современных бассейнах, начатое в конце 50-х годов сотрудниками Геологического института АН СССР, оказало весьма значительное воздействие на понимание роли океанского вулканизма как важнейшего фактора седиментации.

Изучение всего набора составляющих, которые контролируют функционирование гидротермально-осадочного процесса на дне моря, позволили преодолеть прежние мало обоснованные гипотетические представления о формировании флюидов и происхождении серы, а также внести серьезный вклад в понимание механизмов перемещения флюидов. Особенно интересны положения, базирующиеся на данных прямых природных наблюдений и результатах экспериментов по гидротермальному минералои рудоотложению. В значительной мере достоверность понимания этих процессов основывается на материалах Международного проекта глубоководного бурения.

Большое значение в познании литологии и минералогии глинистых компонентов отложений окраинных зон представляет исследование плейстоценовых осадков Калифорнийского залива (65-й рейс).

Таким образом, участие Геологического института АН СССР в Международной программе глубоководного океанического бурения в течение последнего десятилетия внесло ощутимый вклад в изучение геохимической истории седиментации, проводимое на широкой литолого-фациальной основе, в контексте всей имеющейся геологической информации. Полученные результаты наметили основные этапы эволюции осадконакопления. Важно подчеркнуть, что использование методов современной минералогии и геохимии и обработки массивов аналитических данных по специальным программам при помощи ЭВМ позволили количественно оценить роль главных составляющих: биогенных, обломочных, вулканогенных (гидротермальных), аутигенных и факторов, контролирующих их распределение для каждого из этапов истории осадконакопления. Весьма существенным в проводимых исследованиях явилось применение обработки сравнительно больших массивов аналитических данных при помощи ЭВМ по программе факторного анализа. Такая обработка сравнительно однородных многомерных совокупностей оказалась весьма эффективной благодаря тому, что интерпретация полученных результатов проводилась на основе данных литолого-фациальных исследований, минеральных, геохимических характеристик осадка, с учетом параметров тех процессов, продуктами которых с наибольшей вероятностью могут быть рассматриваемые фазы.

Полученный опыт показывает, что в настоящее время, при наличии достаточно точных и высокопроизводительных методов анализа, полученные массивы аналитических определений могут быть переработаны только при помощи быстродействующих ЭВМ. Использование ЭВМ не просто удобный прием, ускоряющий обработку значительных объемов информации, но и метод, позволяющий решать задачи, которые без их применения казались нам принципиально неразрешимыми. Совершенно очевидно, что эффективность использования ЭВМ зависит от программ многомерного анализа; в итоге получаются результаты, в которых, например, могут быть выделены фазы, группировки, ассоциации компонентов, адекватные реально существующим.

Важно отметить, что подобные методы изучения химии процессов осадкообразования и постседиментационных изменений в истории океанской седиментации получили подтверждение при изучении минерального и химического состава раннемеловых осадков (протоокеанская стадия седиментации) в районе подводных гор Маркус-Неккер и возвышенности Хесса. В этом исследовании показано распределение тонкодисперсных фаз с помощью сканирующего электронного микроскопа и рентгеновского микроскопа; установлено, что главными рассеянными минералами являются сульфиды железа, меди и цинка, в меньшей мере — тончайшие зерна природных сплавов меди и цинка (бронзы), тесно ассоциирующие с пирокластическим материалом. Эти тонкодисперсные компоненты поступали в бассейн седиментации совместно с вулканокластикой, а также как продукты гидротермальных эксгаляций. Сульфиды железа, меди и цинка и соответствующие карбонатные молекулы формировались в ходе постседиментационных преобразований осадка при участии органического вещества. Эти составляющие отражают минералого-геохимические особенности ранней стадии седиментации центральной обяасти северо-западной части Тихого океана. Интересно, что близкие по составу и возрасту осадки развиты в районе возвышенности Шатского и в других районах Тихого океана, в различных частях Атлантики и Индийского океана, что может служить свидетельством широкого распространения осадков ранней стадии и геохимической истории Мирового океана.

Можно полагать, что итоги выполненных минералогических и геохимических исследований, имея самостоятельную научную и практическую ценность, составят в то же время основу для создания общей теории осадочного процесса — литогенеза.

#### МИНЕРАЛОГИЯ И ГЕОХИМИЯ Постюрских отложений центральной области Северо-западной части тихого океана (рейс 62-й)

#### ГЕОХИМИЧЕСКАЯ ИСТОРИЯ ПОСТЮРСКОЙ СЕДИМЕНТАЦИИ В Западных районах подводных гор Маркус-Неккер<sup>1</sup>, СКВ. 463

Относительная полнота разреза постюрских отложений, развитых в районе подводных гор Маркус-Неккер, позволяет рассматривать его в качестве опорного для изучения эволюции мезозойского и кайнозойского осадкообразования в северо-западных областях Тихого океана. Для решения этой задачи и была пробурена скв. 463 [Initial Reports..., 1981].

Основные черты истории мезозойского и кайнозойского осадкообразования в регионе ранее уже освещались [Andel, 1975; Andel et al., 1975, 1976; Hamilton, 1956; Heezen et al., 1971, 1973; Lancelot, 1978; Lancelot, Larson, 1975; Winterer, 1976; Winterer et al., 1973; Larson et al., 1975], причем основное внимание фокусировалось главным образом на вопросах связи седиментации с особенностями тектонического развития, вулканизма, палеоокеанографией и другими факторами.

Задача данной работы заключается в изучении геохимических аспектов постюрской седиментации района гор Маркус-Неккер. Можно полагать, что в химическом, минеральном составе осадков зафиксированы существенные процессы осадкообразования и постседиментационных преобразований. К числу первоочередных вопросов, требующих ответа, могут быть отнесены следующие. В чем геохимическая сущность эволюции мезозойского и кайнозойского осадконакопления для изучаемых областей Тихого океана? Сколь геохимически выраженно проявляется смена режимов седиментации на границе мезозоя и кайнозоя и для основных геохронологических подразделений? Какова геохимическая специфика главнейших этапов седиментации, постседиментационных изменений и природа контролирующих ее факторов?

#### МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В основу данной работы положены результаты изучения химического и минерального состава, а также литологических особенностей отложений, вскрытых скв. 463, полученные в Геологическом институте АН СССР. Информация о литолого-минералогических исследованиях была опубликована ранее [Проблемы литологии..., 1983]. Все химически проанализированные образцы были изучены в шлифах под микроскопом; их типовые разности исследовались рентгенографически в форме препаратов, приготовленных из природного осадка либо слагающих его размерных фракций. Определение химических компонентов осадка выполнялось в химико-аналитической лаборатории ГИНа: главных компонентов – методами валового анализа, тяжелых металлов – методами оптической эмиссионной спектроскопии с использованием международных стандартов [Zolotarev, Choporov, 1978]. Для исключения разбавляющего эффекта биогенных и кластических компонентов, а также для приведения к геохимически сравнимой основе химический состав пересчитывался на бестерригенное, бескарбонатное вещество (БТККВ) [Варенцов, Блажчишин, 1976].

Особенности структурного положения скв. 463 отразились на химическом составе

<sup>&</sup>lt;sup>1</sup> Горы Маркус-Неккер в американской литературе называются Mid-Pacific Mountains,

мезозойских и кайнозойских отложений. Эти особенности наглядно выражаются в обособлении геохимических группировок или парагенетических ассоциаций компонентов. Такие группировки выявляются при обработке данных химического анализа методами факторного анализа; их содержательная интерпретация позволяет установить геохимическую сущность таких ассоциаций: соединений, либо фаз, либо специфических форм нахождения установленных групп компонентов. Массивы аналитических данных обрабатывались на ЭВМ ЕС-1022 в лаборатории математических методов исследований ГИНа (Д.А. Казимиров, П.К. Рябушкин) по программе факторного анализа (*R*-анализа [Davis, 1973; Harman, 1967]).

Выделение ассоциаций производилось на основе группирования компонентов, обладающих значимыми факторными нагрузками (> 0,3) одного знака. В каждом факторе могут быть выделены две ассоциации разного знака, содержание которых поддается геохимической, минералогической интерпретации. В большинстве работ по факторному анализу значения факторных нагрузок интерпретируются как величины, близкие по смыслу к коэффициентам корреляции. Для более явного представления соотношений между компонентами ассоциации каждый химический компонент характеризуется величиной факторной нагрузки на тот фактор, с которым он теснее всего связан. Номер ассоциации отвечает номеру фактора. Характерные нагрузки на прочие факторы для каждой данной ассоциации близки нулю. В результате такой обработки выявляются приводимые ниже ассоциации компонентов и их распределение в разрезе. Для получения более выраженных значений факторных нагрузок проводилось преобразование данных по методу вращения (варимакс Кайзера [Davis, 1973]).

#### ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ КОМПОНЕНТОВ

Для выявления количественных соотношений парагенетических ассоциаций компонентов обрабатывались данные валового химического анализа (вес.% в пересчете на воздушно-сухую навеску) и результаты пересчетов химического анализа на БТККВ. Данные валового анализа позволяют вскрыть геохимические группировки компонентов, отвечающие реальному составу изучаемых осадков. Однако резко преобладающее количество карбонатных и кремнистых составляющих, их выраженный разбавляющий эффект нивелирует специфику аутигенных продуктов гидротермальной, вулканической деятельности, постседиментационных образований. Для исключения разбавляющего эффекта используются различные схемы геохимических пересчетов [Воström, 1973]. Особенности применявшегося нами метода уже излагались в предыдущих работах [Варенцов, Блажчишин, 1976; Varentsov, 1978]. Подчеркнем, что основой для интерпретации парагенетического набора химических компонентов являются данные изучения минерального состава и параметры тех процессов, продуктами которых с наибольшей вероятностью могут быть рассматриваемые фазы.

### Ассоциации, выявляемые на основе данных химического анализа (табл. 1—3; рис. 2)

Ассоциация IA (+) :  $AI_2O_3$  (0,29) <sup>1</sup>,  $Na_2O$  (0,53),  $K_2O$  (0,57), C (0,34), FeO (0,45), Cr (0,93), Ni (0,85), V (0,90), Cu (0,82), Co (0,84), Ga (0,67), Ge (0,57). Набор компонентов и результаты изучения минерального состава осадков с определенностью свидетельствуют о том, что рассматриваемая группировка в наиболее ярких проявлениях представлена (см. рис. 2) иллитом, смешаннослойной фазой монтмориллонит—иллит с примесью цеолита и сопутствующими тяжелыми металлами. Органическое вещество может присутствовать в межслоевом промежутке смешаннослойных фаз, образовавшихся в результате изменения вулканокластического материала, отчетливо наблюдаемого под микроскопом. Это особенно характерно для туфогенных известняков с повышенными количествами растительной органики (обр. 70–5–99–100, нижний апт) и пестроцветных (в данном случае — сероцветных) известняков кровли верхнего апта с заметной примесью вулканокластики. Относительно менее отчетливо эта ассоциация развита в осадках нижнего маастрихта (см. рис. 2).

<sup>&</sup>lt;sup>1</sup> В скобках здесь и далее указывается величина факторной нагрузки компонента на данный фактор.

Ассоциация IB (-): CaO (-0,42), CO<sub>2</sub> (-0,38). Распределение собственно карбоната кальция показано на рис. 2. Отсутствие иных компонентов в этой группировке и ее преимущественное развитие в породах верхнего баррема—верхнего апта, сложенных перекристаллизованными известняками, позволяет считать, что данная ассоциация представлена почти чистым кальцитом как продуктом эпигенетической перекристаллизации. Подчеркнем, что распространение такого эпигенетического кальцита ограничено подсериями II-IV, для которых характерны величины плотности, превышающие 1.89 г/см<sup>3</sup> [Initial Reports..., 1981].

Ассоциация IIA (+): CaO (0,64), Na<sub>2</sub>O (0,61), CO<sub>2</sub> (0,61). Рассматриваемая группировка компонентов представлена карбонатом кальция, слагающим наннофораминиферовые, фораминиферово-нанномиктовые илы и писчий мел соответствующего состава. Характерным компонентом этой разности карбонатов является Na<sub>2</sub>O, входящий в состав диагенетически слабо измененных карбонатных осадков. Обращает на себя внимание, что эта ассоциация весьма отчетливо проявляется в пределах подсерий IA и IB, в которых отмечается изменение плотностей от 1,61 до 1,89 г/см<sup>3</sup> [Initial reports..., 1981]. Ниже, в осадках с плотностью 1,93 г/см<sup>3</sup> и более, рассматриваемая ассоциация почти не встречается. Известно, что в процессе диагенетических преобразований при перекристаллизации биоморфного карбоната происходит высвобождение Na и переход его в поровые растворы.

Ассоциация IIB (–): SiO<sub>2</sub> (–0,89), Al<sub>2</sub>O<sub>3</sub> (–0,71), MgO (–0,52), K<sub>2</sub>O (–0,63), Fe (–0,63). Данная ассоциация представлена компонентами, слагающими преимущественно калийсодержащий Fe, Mg-смектит, смешаннослойные фазы иллит-монтмориллонита и собственно иллита, присутствующего в переменных количествах: от доминирующих до примесей. Развитие этой группировки в разрезе ограничено отложениями верхнего баррема-верхнего турона. Подчеркнем, что наиболее выраженные проявления этой ассоциации наблюдаются в отложениях, обогащенных измененным вулканокластическим материалом основного и среднего состава: в известняках верхнего баррема; оливково-зеленых известняках нижнего апта; туфогенных, с органическими остатками, пестроцветных, преимущественно красноцветных известняках верхнего апта-нижнего альба.

Ассоцпация IIIA (+): CaO (0,48), CO<sub>2</sub> (0,56), Al<sub>2</sub>O<sub>3</sub> (0,14), Ga (0,14). Данная группировка представлена карбонатом кальция, однако ее минералогическая специфика остается недостаточно ясной. Обращает на себя внимание ряд особенностей (см. рис. 2): 1) в нижней части разреза (верхний баррем— средний 34-1-32-34) рассматриваемая ассотурон, от обр. 85-1-100-101 до обр. циация встречается, как правило, совместно с компонентами группировки IIB (-), представленной калийсодержащими смектитами, смешаннослойной фазой смектитиллит, иллитом; 2) в интервале верхний кампан—плейстоцен данная группировка наблюдается на тех же уровнях, что и ассоциация ІА (+) (иллит, смешаннослойная фаза иллит-монтмориллонит). Если рассмотренные выше группировки карбонатов кальция представляют собой, с одной стороны (IIA (+)), исходные биоморфные карбонаты, не испытавшие существенных постседиментационных изменений, а с другой (IB (—)) — карбонаты кальция, являющиеся продуктами эпигенетической перекристаллизации, то имеются основания полагать, что группировка IIIA (+) занимает промежуточное положение. Можно считать, что данный набор компонентов представляет собой остаточную фазу, образующуюся при перекристаллизации, растворении биоморфного карбоната. При этом реликтовый продукт может частично обогащаться глиноземом.

Accoquagua IIIB (-): C (-0,69), Mn (-0,36), Ni (-0,44), Со (-0.46). Ph. (-0,57), Mo (0,86). Набор компонентов этой ассоциации с определенностью свидетельствует о том, что она представлена органическим веществом и связанными с ним тяжелыми металлами. Наиболее ярко данная группировка выражена в нижнеаптских туфогенных известняках, обогащенных органическим веществом, и в осадках верхнего турона-коньяка (обр. 27-1-111-120). В других интервалах разреза (кровля маастрихта, основание нижнего зоцена) структура данной группировки проявляется относительно четко. Однако из ее состава выпадает Солг. Возможно, это связано с тем, что именно на данном уровне проходит несогласная, со значительным перерывом (около 14 млн. лет) граница мезозоя и кайнозоя (обр. 8-2-54-56 и 7-1-61-63; см. рис. 2).

Рис. 2. Стратиграфическое распределение факторных значений главных парагенетических ассоциаций химических компонентов в разрезе постюрских отложений скв. 463

Глинистые компоненты (к рис. 2–3): 1 – смешаннослойная монтмориллонитлонит-иллитовая фаза (М-i) с примесью иллита; 2 – монтмориллонит-цеолитовая ассоциация по вулканокластике основного состава; 3 – иллит с примесью смешаннослойной иллит-монтмориллонитовой фазы (i-M); 4 – иллит с примесью хлорита; 5 – иллит с примесью монтмориллонита; 6 – смешаннослойная фаза монтмориллонит-иллит с цеолитом; 7 – кристобалит и тридимит

Литология — к рис. 2, 3, 7, 9, 13, 14, 18, 19, 23-44: 8 — радиоляриевые

илы; 9 — литифицированные радиоляриевые отложения; 10 — наннофоссилиевые илы; 11 — фораминиферовые илы; 12 — наннофоссилиевый писчий мел; 13 — маннофораминиферовый писчий мел; 14 — известняк; 15 окремнелый известняк; 16 — обломочно-комковатый известняк; 17 латеральное замещение известняков грубокластическими отложениями; 18 — глинистые илы и аргиллиты; 19 — глинистые алевриты; 20 — песок; 21 — тонкий (глинисто-алевролитовый) пирокластический материал; 22 — вулканический пепел; 23 — грубозернистый вулканокластический материал; 24 — цеолиты; 25 — базальт; 26 — рассеянное органическое вещество

| Стратиграфи-                            |          | ý,           | Литология                                     | 10KC<br>16H-  |                 |                 | Ракторные зн                 | ачения ассоци      | иации после и   | вращения        |                                         |
|-----------------------------------------|----------|--------------|-----------------------------------------------|---------------|-----------------|-----------------|------------------------------|--------------------|-----------------|-----------------|-----------------------------------------|
| ческие Сери)<br>подразделения           | e pu     | ungh         |                                               | IDUN<br>MUCI  | <i>№º обр</i> . | IA(+)           | IB(-)                        | IIA(+)             | <u>П</u> В()    | ША(+)           | ШB()                                    |
|                                         | ¥        | 1.0          | 000 000 000                                   | NC)           |                 | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0              | 0,5 1,0 1,5 2,0    | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0                         |
| а плейстацен                            |          |              | <u> </u> →,→,→  <sub>⊥</sub> → <sub>⊥</sub> → |               | 1-1-70-72       |                 |                              |                    |                 | 888             |                                         |
| DE HUMMUN SES                           | ê la     | ူထိ          | ╎┷╷┷╷┷╎┷╶┷╵                                   |               |                 |                 |                              | ×                  |                 | 8               |                                         |
| З Верхний 553                           | \$   ĕ   | 4            | <u> ⊥,⊥,⊥ ⊥,⊥</u>                             | 9             | 4-3-20-22       |                 |                              | 8                  |                 | <u> </u>        |                                         |
| E MUOYEN                                | 6 6      | 14           |                                               |               | 5-1-63-65       |                 |                              |                    | L               |                 | <b>M</b>                                |
| B B BRUZDHEN SSO                        |          | - l õ        |                                               | :             | 6-25961         |                 |                              |                    |                 | £229            |                                         |
| * 8 30yen 682                           | <u>6</u> | +            |                                               | 1777777       | 7-1-61-63       |                 |                              | ·····              |                 | •••••           |                                         |
|                                         |          |              |                                               | ¥/////        | 8-2-54-56       | <u> </u>        | initie and the second second |                    |                 |                 | 3.96 99999                              |
|                                         |          |              |                                               | ¥//////       | 8-3-34-30       | N               |                              | ********           | ļ               |                 |                                         |
|                                         |          |              |                                               | <i>\/////</i> | 9-1-30-32       | ₽               |                              | 8                  | <u> </u>        | 100001          |                                         |
|                                         |          |              |                                               | <i>\/////</i> | 11.1-72 74      | P               | 58                           |                    | <u></u>         |                 | 8                                       |
|                                         |          |              |                                               | 1//////       | 12-1-30 22      |                 |                              | 00000<br>000000000 | <del> </del>    |                 |                                         |
|                                         |          | 1            |                                               | ¥/////        | 12-1-30-32      |                 |                              |                    |                 | 201             |                                         |
|                                         |          |              |                                               |               | 14-1-84-86      |                 |                              |                    |                 | 1884            |                                         |
|                                         |          |              |                                               |               | 15-2-70-72      |                 |                              |                    |                 | <b>XX</b>       |                                         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |              |                                               | 7/7/7/        | 16-2-80-82      |                 |                              |                    |                 | Xi              |                                         |
| <b>E E B E</b>                          |          | 1            |                                               | V/////        | 17-1-86-88      | N               |                              |                    | <u> </u>        | XXI             |                                         |
|                                         | 6        | 니유           |                                               | V/////        | 19-1-70-72      |                 | 8                            |                    | 3               | 100000          |                                         |
|                                         | 12       | ្រីស្ន       |                                               | <i>V/////</i> | 20-1-70-72      | N               |                              |                    |                 | 8               |                                         |
| 0 10 638                                |          | 1            |                                               | <i>\/////</i> | 21-1-70-72      |                 |                              |                    |                 | <u> </u>        |                                         |
| Bennyui See                             | 6        | ) ( <u>%</u> |                                               |               | 22-2-121-123    | N               |                              |                    |                 | R               | Î – – – – – – – – – – – – – – – – – – – |
| A X KAMAAH                              | 1.4      | ·   4        |                                               | -             | 24-1-93-95      |                 | 8                            | <b>**</b>          |                 |                 |                                         |
|                                         |          |              |                                               |               | 25-1-23-25      |                 |                              |                    |                 | 5               |                                         |
| Rentruit 889                            |          |              | THE THE A                                     |               | 26-1-118-120    |                 | T                            | *********          |                 |                 |                                         |
| mupon-                                  |          |              |                                               | - MMMMM       | 27-1-118-120    |                 |                              |                    |                 |                 |                                         |
| KONGAK 363                              |          |              |                                               |               | 30-1-100-102    |                 |                              | ×                  |                 |                 |                                         |
| <u>CDEDHUU</u> 358                      |          |              |                                               | ┨╻┋╻┋╻╹       | 33-1-61-63      |                 |                              |                    |                 |                 | <u>.</u>                                |
| mypon 202                               |          |              |                                               | ┨ѧ≜ѧ≜ѧ≜       | 34-1-32-34      |                 |                              |                    | ×××             | <u>1900</u>     | ļ                                       |
| Hummud SCA                              |          |              |                                               | <i>V/////</i> | 38-1-40-41      |                 | S                            |                    |                 | <b>p</b>        | L                                       |
| Depinud-cped                            | 1        |              |                                               | A             | 43-1-50-51      | I               | 8                            |                    |                 | Į               |                                         |
| Ввозний                                 | <b>.</b> |              |                                               | 7             | 48-164-66       | N               | L                            | L                  |                 |                 | <b>_</b>                                |
| a.1166                                  |          |              | <u> I+ ¦+ ¦t it k ta</u>                      | TTTTT         | 50-16465        |                 | <u> </u>                     | L                  | 882             | И               | l                                       |

| П        | Cpednya |             |                     |        | Ρ   |                 |                     | III.     | 55-1-4-5           |              |                   |    |      |          |               |
|----------|---------|-------------|---------------------|--------|-----|-----------------|---------------------|----------|--------------------|--------------|-------------------|----|------|----------|---------------|
|          |         |             | 152                 |        | Þ   |                 | ={///               | ////     | 56-1-35-36         |              | 1111              | }  |      |          |               |
|          |         |             | 13. I               |        | þ   |                 | ////                | ////     | 57 <b>-1-22-23</b> |              |                   |    | S222 | 1000 I   |               |
|          | Baamuri | '>          |                     |        | Ь   | ┎╧╦╌┟╬┷╶╬┷      | 9/// IE             | ////     | 58- <b>2-97-98</b> |              |                   |    |      | 660      | <u> </u>      |
| 11       | anm-    | 9           | Sğa                 | 2      | 5   |                 | -111                | 711.     | 59-1-65-67         |              | N                 |    | 3    | 8        |               |
|          | питний  | Ē×.         | 19.5                | 12     | ٠Ľ  | ┶┶┰┢┰╞┰         | s 2000              |          | 60-1-75-78         | 6,31///      |                   |    |      | 888889   |               |
|          | a.166   | 28          | 12 - Ê              | 3 3    | 5 P |                 | 1.000               |          | 60-4-81-82         |              |                   |    |      |          | ┥─────┤       |
| 11       |         | 36          | 262                 | 61     | 'Β  |                 | т                   |          | 61-1-27-28         |              |                   |    |      |          |               |
|          | 1 1     | 200         | 20                  | 512    | ۶h  |                 | <del>, 1</del> 8888 |          | 62-1-15-16         |              |                   |    |      | 1001     |               |
| 11       |         | 25          | 8.                  | 13     | 14  |                 | =800                |          | 63-1-104-105       |              |                   |    | 8    | <u> </u> |               |
| <b>1</b> |         | le l        | 23                  | 5      | Ľ   |                 | -1000               |          | 64-2-82-84         |              | lli.              |    |      |          |               |
| 10 8     |         |             | Cenni u             |        | Ρ   |                 | -1888               |          | 65-1-30-31         |              | diff. His         |    |      |          |               |
| 0        |         |             | JE JEHON<br>USBecm- |        | h   | ┍┶┯╘┼┶┯╘        | - <b>T</b> 8888     |          | 66-3-16-18         |              |                   | _  |      |          |               |
| 5        |         |             | NAK                 |        | - 6 |                 |                     | $\Sigma$ | 67-1-25-27         |              | Ŵ                 |    | XXXX | <u> </u> |               |
| 00       |         | Tyau        | าชื่อเน้            | Ruli 4 | ۶F  |                 | 100                 | 000      | 69-3-15-16         |              |                   |    |      |          |               |
| 1.15     | пижниц  | E 60        | 78                  | ₩£÷    | ۶Þ  | ्री इन्हें हैं। | πKX                 | iXi      | 70-5 <b>99</b> 100 | ////2,94//// |                   | X  |      |          | 1000005.32929 |
|          | 4////   | 43080       | IIINAK              | 22.2   | ٤H  |                 | <b>π</b> 200        | 888      | 71-4-41-42         |              |                   |    |      |          |               |
| 22       |         |             | 12'3 a c            |        | F   |                 | 1/1                 | UL       | 72-2-104-105       |              |                   |    |      |          |               |
| 14 1     |         | 5.          | 8886 X              |        | Ľ   |                 |                     | 711,     | 73-3-18-19         |              |                   |    |      |          |               |
| 1        |         | 5 8.        | 2222                | 5      | Ľ   |                 | <b>1</b>            | 888      | 74-1-69-70         |              |                   |    |      |          |               |
| 115      | 1 1     | 2225        |                     | 2 2    | îΡ  |                 | -                   |          | 75-1-78-79         |              | Hilli             | ** |      |          |               |
|          |         | 16.29 E     | 1. 8                | ર જ    | h   |                 | Ť                   |          | 77-1-0-1           |              | 411.991 (A. 1997) |    |      |          |               |
|          | Reamin  | 2220        | 8.322               | د ان   |     |                 | -888                |          | 81-1-26-27         |              |                   |    |      | <u> </u> |               |
|          | hannem  | W200        | 6000                | 22     |     | ्रा स्टिम       |                     |          | 82-1-25-26         |              |                   |    |      |          |               |
|          |         | 2223        | 2500                | 16     |     |                 | 코                   |          | 83-1-86-87         |              |                   |    |      |          |               |
|          |         | <b>66</b> * | 5                   |        | Ŀ   |                 |                     |          | 85-1-100-101       |              | 111               | _[ | X    |          |               |





Таблица 1 Химический состав отложений мезозой и кайнозой скв. 463 (вес.% в пересчете на воздушно-сухую навеску)

| № обр.*                  | SiO2           | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>2</sub> | CaO            | MgO  | MnO   | Na <sub>2</sub> O | к₂0  | 002   | с         |   |
|--------------------------|----------------|--------------------------------|--------------------------------|----------------|------|-------|-------------------|------|-------|-----------|---|
| 1-1-70-72                | 9,19           | 2,93                           | 1,48                           | 45,15          | 0,58 | 0,08  | 1,43              | 0,75 | 35,20 | Нет       | • |
| 3-2-48-50                | 2,16           | 0,70                           | 0,69                           | 52,47          | 0,16 | 0,05  | 1,10              | 0,31 | 41,49 |           |   |
| 4-3-20-22                | 2,46           | 1,02                           | 0,56                           | 51,02          | 0,42 | 0,07  | 1,25              | 0,33 | 39,40 | **        |   |
| 5-1-63-65                | 0,22           | 0,03                           | 0,35                           | 54,84          | Нет  | 0,04  | 0,93              | 0,20 | 42,45 | ••        |   |
| 635961                   | 0,38           | 0,14                           | 0,30                           | 54,73          | 0,24 | 0,04  | 0,76              | 0,20 | 42,35 | **        |   |
| 7-1-61-63                | 0,32           | Нет                            | 0,17                           | 54,97          | Нет  | 0,11  | 0,68              | 0,15 | 42,75 | **        |   |
| 8-2-54-56                | 91,10          | 1,05                           | 1,62                           | 2,70           | 0,02 | 0,04  | 0,23              | 0,26 | 1,20  | **        |   |
| 8-3-34-36                | 1,03           | 0,28                           | 0,26                           | 54,04          | 0,33 | 0,01  | 1,08              | 0,20 | 42,10 | **        |   |
| 9-1-30-32                | 6,84           | 0,68                           | 0,24                           | 50,00          | 0,59 | 0,01  | 1,01              | 0,36 | 38,55 | "         |   |
| 10-1-78-80               | 5,36           | 0,81                           | 0,52                           | 50,83          | 0,09 | 0,01  | 0,85              | 0,41 | 39,00 | **        |   |
| 11-1-72-74               | 11,97          | 0,39                           | 0,87                           | 46,71          | Нет  | 0,01  | 1,45              | 0,31 | 36,50 | **        |   |
| 12-1-30-32               | 1,19           | Нет                            | 0,21                           | 52,29          | 0,83 | 0,21  | 1,06              | 0,23 | 40,60 | **        |   |
| 13-1-72-74               | 0,60           | 0,25                           | 0,26                           | 54,03          | 0,08 | 0,01  | 1,45              | 0,25 | 41,85 | **        |   |
| 14-1-84-86               | 0,62           | 0,17                           | 0,17                           | <b>53,88</b>   | 0,16 | 0,01  | 1,64              | 0,25 | 42,05 | **        |   |
| 15-2-70-72               | 11,74          | 0,47                           | 0,10                           | 47,85          | 0,42 | Нет   | 0,95              | 0,25 | 37,35 | "         |   |
| 16-2-80-82               | 1,48           | 0,25                           | 0,31                           | 54,07          | Нет  | 0,01  | 1,27              | 0,31 | 41,75 | "         |   |
| 17-1-86-88               | 1,09           | 0,31                           | 0,35                           | 53,84          | "    | 0,01  | 1,45              | 0,31 | 41,65 | ••        |   |
| 19-1-70-72               | 18,24          | 0,49                           | 0,30                           | 44,49          | 0,34 | 0,01  | 0,75              | 0,20 | 33,80 | **        |   |
| 201-7072                 | 1,29           | 0,20                           | 0,43                           | 54,04          | Нет  | 0,01  | 1,35              | 0,31 | 42,05 | "         |   |
| 21-1-70-72               | 0,76           | 0,18                           | 0,52                           | 54,32          | "    | 0,01  | 1,10              | 0,20 | 42,40 | "         |   |
| 22-2-121-123             | 0,95           | 0,12                           | 0,52                           | 54,59          | "    | 0,01  | 1,27              | 0,25 | 42,50 | "         |   |
| 24-1-93-95               | 12,59          | Нет                            | 0,63                           | 46,94          | 0,41 | Нет   | 0,68              | 0,23 | 36,10 | **        |   |
| 25-1-23-25               | 2,46           | 0,37                           | 0,52                           | 53,33          | Нет  | 0,02  | 1,27              | 0,31 | 41,60 | **        |   |
| 26-1-118-120             | 0,60           | Нет                            | 0,50                           | 53,12          | 0,49 | 0,03  | 0,97              | 0,14 | 41,70 | "         |   |
| 27-1-118-120             | 1,93           | "                              | 0,88                           | 52,73          | 0,17 | 0,04  | 0,97              | 0,38 | 39,75 | 0,03      |   |
| 30-1-100-102             | 2,59           | 0,53                           | 0,36                           | 52, <b>6</b> 6 | 0,40 | 0,04  | 0,95              | 0,31 | 40,15 | Нет       |   |
| 33—1 —61 —63             | 3,45           | 0,31                           | 0,96                           | 52,38          | Нет  | 0,05  | 1,10              | 0,36 | 41,00 | "         |   |
| 34-1-32-34               | 9,55           | 0,53                           | 0,90                           | 47,58          | 0,50 | 0,04  | 0,77              | 0,42 | 35,85 | "         |   |
| 38-1-40-41               | 3,02           | 0,43                           | 0,55                           | 53,43          | 0,22 | 0,05  | 0,81              | 0,25 | 40,95 |           |   |
| 43-1-50-51               | 0,28           | Нет                            | 0,76                           | 53,21          | 0,92 | 0,04  | 0,77              | 0,19 | 40,65 | "         |   |
| 48-1-64-66               | 37,52          | 1,01                           | 0,87                           | 33,08          | 0,16 | 0,03  | 0,93              | 0,36 | 20,30 | ••        |   |
| 50-1-64-65               | 11,94          | 1,05                           | 0,56                           | 46,51          | 0,14 | 0,05  | 0,68              | 0,51 | 36,00 |           |   |
| 56-1-4-5                 | 27,96          | 0,27                           | 2,12                           | 36,32          | 0,83 | 0,06  | 0,53              | 0,56 | 28,90 | "         |   |
| 56-1-35-36               | 5,39           | 0,07                           | 0,49                           | 50,38          | 0,57 | 0,04  | 0,53              | 0,28 | 38,85 |           |   |
| 57-1-22-23               | 12,00          | 1,13                           | 0,68                           | 46,16          | 1,22 | 0,01  | 0,52              | 0,41 | 36,05 |           |   |
| 58-2-97-98               | 16,69          | 2,25                           | 1,02                           | 41,35          | 1,27 | 0,04  | 0,60              | 0,83 | 33,30 |           |   |
| 59-1-65-67               | 11,11          | 0,36                           | 0,41                           | 46,88          | 1,23 | 0,07  | 0,60              | 0,31 | 37,45 |           |   |
| 60-1-/5-/8               | 48,55          | 15,80                          | 8,29                           | 4,17           | 2,82 | 0,01  | 1,74              | 3,15 | 3,50  |           |   |
| 60-4-81-82               | 21,78          | 2,63                           | 2,45                           | 30,83          | 1,94 | 0,01  | 0,74              | 0,61 | 29,45 |           |   |
|                          | 23,72          | 0,71                           | 0,86                           | 37,32          | 2,03 | 0,01  | 0,47              | 0,37 | 31,20 |           |   |
|                          | 25,30          | 1,27                           | 1,32                           | 37,07          | 1,43 | Следы | 0,01              | 0,41 | 29,50 |           |   |
| 63-1-104-105             | 12,99          | 0,90                           | 0,50                           | 47,00          | 0,23 | 0,04  | 0,01              | 0,33 | 37,35 |           |   |
| 04-2-02-04<br>CE 1 20 21 | 9,00           | 0,40                           | 0,37                           | 49,31          | 0,22 | 0,05  | 0,54              | 0,23 | 36,75 |           |   |
| 66 2 16 10               | 14,02          | 1.05                           | 0,70                           | 40,/5          | 0,23 | 0,04  | 0,47              | 0,33 | 30,30 |           |   |
| 67 4 05 07               | 10,10          | 1,05                           | 0,97                           | 43,00          | 0,40 | 0,07  | 0,05              | 0,70 | 33,50 |           |   |
| 0/-1-20-2/               | 29,01          | 1,20                           | 1 22                           | 37,01          | 0,40 | 0,04  | 0,00              | 0,47 | 28,79 |           |   |
| 70 5 00 100              | 53,09          | 1,50                           | 2 00                           | 11 57          | 0,43 | 0,13  | 1 1 2             | 0,70 | 6.00  |           |   |
| 70-5-59-100              | 10.02          | 1 02                           | 1.04                           | 11,57<br>A1 61 | U,07 | 0,09  | 0.76              | 0,70 | 22 60 | 2,11      |   |
| 72 2 104 105             | 19,93<br>E0 66 | 1,02                           | 0.72                           | 10 72          | 0.20 | 0,13  | 0,70              | 0,01 | 15 25 | // File 1 |   |
| 72-2-104-105             | 59,00          | 2.67                           | 1 65                           | 22 15          | 0,38 | 0,08  | 0,47              | 0.74 | 16.20 |           |   |
| 74_1_60_70               | 52 37          | 1 50                           | 1 22                           | 21 49          | 0,52 | 0,00  | 0,00              | 0,74 | 16.26 |           |   |
| 75_1_79_70               | 1 /1           | He+                            | 000                            | 53 11          | 0,01 | 0,00  | 0,00              | 0,00 | 41 00 | ,,        |   |
| 77-1-0-1                 | 15.76          | 0.53                           | 0.30                           | 46 22          | 0,52 | 0.06  | 0,40              | 0.23 | 35.85 |           |   |
| 81_1_26_27               | 6 88           | 1.33                           | 0.95                           | 50 33          | 0.65 | 0.04  | 0 47              | 0.23 | 39.85 |           |   |
| 82_1_25_26               | 47 18          | 1 60                           | 1 02                           | 25 16          | 0.82 | 0.04  | 0.61              | 0.61 | 19.05 |           |   |
| 83-1-86-87               | 50 69          | 1 60                           | 1 00                           | 23 98          | 0 74 | 0.03  | 0.61              | 0.52 | 18 60 |           |   |
| 85-1-100-101             | 7.50           | 0.39                           | 0.27                           | 50 71          | 0.58 | 0.02  | 0.47              | 0.14 | 40.30 |           |   |
|                          |                |                                |                                |                |      |       | -,                |      |       |           |   |

<sup>6</sup> В книге используется нумерация образцов, принятая в Маждународной программе глубоководного океанического бурения (DSDP): первое число — номер скважины (если номер скважины вынесен в заголовок графы или таблицы, как в данном случае, то в номер образца он не включается), второе — номер керна, третье — номер секции керна, четвертое и пятое — положение образца в секции керна (интервал в см).

|   | Mnaan        | Pass     |                                                                                                                                                                      |                                                                                                                                   |               | · .          | -<br>[                |                 |                   |                |                                  |
|---|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-----------------------|-----------------|-------------------|----------------|----------------------------------|
|   |              | line g . | ბ                                                                                                                                                                    | ïŻ                                                                                                                                | >             | 5<br>C       | ပိ                    | Pb              | Ga                | පී             | Ŵ                                |
| - | 0,06         | 0,05     | =                                                                                                                                                                    | 12                                                                                                                                | < 15          | <20          | 10                    | 0I>             | <b>2</b> 2        | 1              | <1,5 .                           |
|   | 0,0          | 0,05     | ~10<br>^10                                                                                                                                                           | <10<br>10</td <td>&lt;15</td> <td>&lt;20</td> <td>&lt;10</td> <td>&lt;10</td> <td><b>9</b><br/>V</td> <td>Ÿ</td> <td>&lt;1,5</td> | <15           | <20          | <10                   | <10             | <b>9</b><br>V     | Ÿ              | <1,5                             |
|   | 0,05         | 0,07     | 210<br>V                                                                                                                                                             | 210<br>V                                                                                                                          | <15<br><      | 20<br>V      | 9<br>V                | ~10<br>~        | 90<br>V           | v              | <1,5                             |
|   | 0,03         | 0        | v<br>10                                                                                                                                                              | 210<br>∨                                                                                                                          | <15<br><      | 20<br>V      | <b>1</b> 0<br>V       | ~10             | <b>9</b><br>V     | v              | <1,5                             |
|   | 8,0          | 0,03     |                                                                                                                                                                      |                                                                                                                                   | <15<br><15    | 22           |                       |                 | s i               | <u>,</u>       | 5.<br>1,5                        |
|   | 80           | 5,6      | 2:                                                                                                                                                                   | 24                                                                                                                                | √ \<br>1<br>1 | 2 e          |                       |                 | 0 u<br>V \        | 7.             | 0, L <                           |
|   | 300          |          |                                                                                                                                                                      | <u>-</u>                                                                                                                          |               | 200          |                       |                 | 0 u               | 7:             | 0, u<br>0, u                     |
|   | 5            | 300      |                                                                                                                                                                      |                                                                                                                                   |               |              |                       |                 | о и<br>/ \        | 73             | n u<br>- +<br>- \                |
|   | 5.0          | 38       |                                                                                                                                                                      |                                                                                                                                   |               |              |                       |                 | а и<br>/ \        | 73             | о<br><br>                        |
|   | 5            |          |                                                                                                                                                                      |                                                                                                                                   |               |              |                       |                 | n u<br>/ \        | 73             | ດູ ແ<br><br>/                    |
|   | 10,0         |          |                                                                                                                                                                      |                                                                                                                                   |               |              |                       |                 | n u<br>/ \        | 73             | 0 u                              |
|   | 2 2          |          |                                                                                                                                                                      |                                                                                                                                   |               |              |                       | 2               | л ы<br>/ \        | 73             | 0 u                              |
|   |              |          |                                                                                                                                                                      |                                                                                                                                   |               |              |                       | 29              | 0 B<br>/ \        | 73             | ο<br>                            |
|   | 5            |          |                                                                                                                                                                      |                                                                                                                                   |               |              | 2                     |                 | 0 L<br>/ \        | 7:             |                                  |
|   | Het<br>200   |          |                                                                                                                                                                      | 2                                                                                                                                 |               |              |                       |                 | , v               | 23             | ין<br>קיו<br>גי                  |
| - | 5,6          | 7 0<br>0 |                                                                                                                                                                      | 2                                                                                                                                 |               |              |                       |                 | <b>?</b> !        | 5:             | ر ب<br>2                         |
|   | 5,2          | 7, C     |                                                                                                                                                                      | 2                                                                                                                                 | 912<br>V      | 22           |                       |                 | ې<br>۷            | 5              |                                  |
| - | 50           | 0,02     | 01v                                                                                                                                                                  | 210<br>V                                                                                                                          | <15           | ~20          | <10<br><              | <b>9</b>        | <b>2</b> 2        | V              | <1,5                             |
| 0 | 10,0         | 0,02     | ~10<br>~                                                                                                                                                             | 20                                                                                                                                | <b>∼</b> 15   | <20<br><     | <b>9</b><br>V         | 2 <b>1</b> 0    | 90<br>∨           | v              | <1,5                             |
| 0 | 50           | 0,02     | 2<br>2<br>2                                                                                                                                                          | ~ <del>1</del> 0                                                                                                                  | <15<br><      | 20<br>V      | ~<br>10               | <b>1</b> 0      | <b>2</b> 2        | Ÿ              | <1,5                             |
| Č | 5            | 0,02     | ~ <b>10</b>                                                                                                                                                          | ~<br>20                                                                                                                           | <15           | <20<br><     | ~10<br>~              | ~<br>10         | <b>Ω</b><br>∨     | Ÿ              | <1,5                             |
|   | Нет          | 0,02     | ~10<br>~                                                                                                                                                             | ~<br>10                                                                                                                           | <15           | ~ <b>3</b> 0 | <b>10</b>             | ~10<br>~10      | <b>2</b><br>∨     | Ÿ              | <1,5                             |
| Č | 0,02         | 0,02     | ~<br>10                                                                                                                                                              | ~10<br>^                                                                                                                          | <15           | < 20         | ~10<br>~              | ~10             | <b>2</b><br>∨     | Ÿ              | <1,5<br><15                      |
| Č | 0,02         | 0,05     | ~10<br>~                                                                                                                                                             | ~<br>10                                                                                                                           | <15           | <20          | ~10<br>^              | ~10             | <b>9</b><br>2     | ~              | <1,5                             |
| Ű | 0,03         | 0,02     | <10<br><10                                                                                                                                                           | <ul> <li>10</li> <li>10</li> </ul>                                                                                                | <15<br><      | <<br>20      | <10<br><10            | ~10             | <b>9</b><br>V     | v              | <1,5                             |
| 0 | 03           | 0,03     | <10<br><10                                                                                                                                                           | ~<br>10                                                                                                                           | <15           | <20          | <10<br><10            | ~ <b>1</b> 0    | 9<br>V            | v              | <1,5                             |
| Č | 90,0         | 0,02     | 01 v                                                                                                                                                                 | ~<br>10                                                                                                                           | <15           | <20<br><     | <10<br><10            | <10<br><10      | <b>9</b><br>V     | v              | <1,5                             |
| Ŭ | 0,03         | 0,03     | <ul><li>10</li></ul>                                                                                                                                                 | ~<br>10                                                                                                                           | <15           | < 20         | ~10<br>^              | ~10<br>^        | <b>9</b><br>2     | Ÿ              | <1,5                             |
| - | 8            | 0,03     | <10<br>10</td <td>~10<br/>~</td> <td>&lt;15</td> <td>&lt;20<br/>&lt;</td> <td>~10<br/>^1</td> <td>~10<br/>^</td> <td><b>2</b><br/>V</td> <td>Ÿ</td> <td>&lt;1,5</td> | ~10<br>~                                                                                                                          | <15           | <20<br><     | ~10<br>^1             | ~10<br>^        | <b>2</b><br>V     | Ÿ              | <1,5                             |
|   | 0,03         | 0,02     | <10<br><10                                                                                                                                                           | ∧<br>10                                                                                                                           | <15           | 20<br>V      | ~10<br>^              | ~<br>10         | 22<br>V           | Ÿ              | <1,5                             |
|   | 0,02         | 0,02     | ~10<br>~                                                                                                                                                             | ~<br>10                                                                                                                           | <15           | <15          | ~ <b>10</b>           | ~10             | <b>9</b><br>V     | v              | <1,5                             |
|   | 0,04         | 90'0     | ~10<br>~                                                                                                                                                             | ~<br>10                                                                                                                           | <15           | <15          | ~10<br>~              | ~10<br>~        | <b>2</b><br>∨     | Ÿ              | <1,5                             |
|   | 0,05         | 9<br>8   | 2 <b>1</b> 0                                                                                                                                                         | v<br>10                                                                                                                           | <15<br><      | <15          | ~10<br>~              | ~10<br>~        | 90<br>V           | Ŷ              | <1,5                             |
|   | 0,03         | 0,03     | 2 <b>1</b> 0                                                                                                                                                         | v<br>10                                                                                                                           | <15           | <15<br><15   | 010<br>V              | ~10<br>~        | <b>2</b> 2<br>∨   | v              | <1,5                             |
|   | 0,01         | 0<br>0   | <b>0</b><br>V                                                                                                                                                        | ~10<br>~                                                                                                                          | <15           | ខ្ល          | 210<br>V              | ~10<br>~        | 8<br>∨            | v              | <1,5<br><                        |
|   | 0,03         | 0,04     | =                                                                                                                                                                    | v10                                                                                                                               | <15           | 8            | 010<br>V              | <b>9</b><br>V   | 22<br>∨           | v              | <1,5<br><1                       |
|   | 0,05         | 0,0      | 20<br>V                                                                                                                                                              | 20<br>V                                                                                                                           | <15<br><      | 24           | <b>9</b><br>V         | 20<br>V         | ი<br>∨            | 2              | <1,5<br><1,5                     |
|   | 0,0          | 0,02     | 172                                                                                                                                                                  | 6                                                                                                                                 | 280           | 135          | 6                     | 2               | œ                 | 4              | 9                                |
|   | 0,01         | 8        | 8                                                                                                                                                                    | 15                                                                                                                                | 21            | 26           | ~10<br>~              | <b>9</b><br>V   | 22<br>V           | v              | <1,5                             |
|   | 0,01         | 8        | =                                                                                                                                                                    | =                                                                                                                                 | <15<br><      | ×30          | <b>9</b><br>V         | 29              | 20<br>V           | V              | <1,5                             |
|   | Следы        | 0,0      |                                                                                                                                                                      | =                                                                                                                                 | <15<br><      | 22           |                       | <b>1</b> 0      | <b>2</b>          | 2              | 2,5<br>∨                         |
|   | 0,03         | 0,02     | <b>9</b><br>V                                                                                                                                                        | 20                                                                                                                                | <15<br><      | <20          | 0<br>V                | 0<br>V          | <b>2</b><br>V     | ⊽              | <1,5                             |
|   | 0,04         | 0,02     | ~ <b>1</b> 0                                                                                                                                                         | ~ <b>1</b> 0                                                                                                                      | <15           | <20<br><     | 010<br>V              | <b>9</b><br>V   | 9<br>V            | v              | <1,5                             |
|   | 0,03         | 0,03     | 2 <b>0</b><br>V                                                                                                                                                      | ~<br>10                                                                                                                           | <15           | <20          | <b>9</b><br>V         | 2 <b>0</b><br>V | 20<br>∨           | Ÿ              | <1,5                             |
|   | 0,05         | 0,02     | ~10<br>^10                                                                                                                                                           | 010<br>V                                                                                                                          | <15<br><      | <20<br><     | 20                    | ~<br>10         | 20<br>∨           | Ÿ              | <1,5                             |
|   | 0,03         | 0,004    | ~<br>10                                                                                                                                                              | 0<br>⊽                                                                                                                            | <15<br><      | ~20<br>~     | ~10<br>~              | ~10             | 20<br>∨           | Ŷ              | <1,5                             |
|   | 0,10         | 0.02     | 10                                                                                                                                                                   | ~10                                                                                                                               | 16            | 25           | <10                   | <10<br><10      | 2 <b>2</b><br>V   | v              | <1.5                             |
|   | 0.07         | 00       | 42                                                                                                                                                                   | 6                                                                                                                                 | 2             | 8            | 52                    | Ξ               | 20<br>V           | 1.4            | 7.5                              |
|   | 010          | 0.03     | <10                                                                                                                                                                  | <10                                                                                                                               | <15           | <15          | 10                    | <10             | 29<br>V           | v              | <15                              |
|   | 0.06         | 000      | ; ₽                                                                                                                                                                  | =                                                                                                                                 | 25            | × 20         |                       | <10<br><10      | v<br>V            | Ţ.             | <ul><li>15</li><li>215</li></ul> |
|   | 0.05         | 100      | 2 =                                                                                                                                                                  | : =                                                                                                                               | 2             | 22           | 2<br>2<br>2<br>2<br>2 | 10              | , n<br>2          | 7              | × 1 5                            |
|   | 0.05         | 100      | 10                                                                                                                                                                   | 2                                                                                                                                 | <u>6</u>      |              | ~ 10<br>~ 10          | 10              | • <b>•</b>        | ; <del>.</del> | (<br>1<br>2<br>1<br>2            |
|   | 90'0<br>90'0 | 500      |                                                                                                                                                                      | 20                                                                                                                                | ×15           | 15           |                       | 012             | ) u<br>( \        | 7              | , v<br>, v                       |
|   | 0.05         | 000      | 010                                                                                                                                                                  | ~10<br>~10                                                                                                                        | <15           | 012          | 010                   | 10              | 9 <b>G</b><br>V   | ; <del>.</del> | 2<br>1<br>2<br>2<br>2            |
|   | 0.03         | 000      | 2                                                                                                                                                                    | 10                                                                                                                                | <15           | <20<br>< 20  | 0<br>V                | 10              | 9 <b>9</b><br>V   |                | <1.5<br><1.5                     |
|   | 0.03         | 0.05     | 5                                                                                                                                                                    | <10<br>10</td <td>21</td> <td>22</td> <td>010<br/>V</td> <td>~<br/>10</td> <td><b>2</b><br/>2</td> <td>ţ</td> <td>&lt;1.5</td>    | 21            | 22           | 010<br>V              | ~<br>10         | <b>2</b><br>2     | ţ              | <1.5                             |
|   | 0.02         | 0.02     | 2                                                                                                                                                                    | 10                                                                                                                                | 33            | 22           | 10                    | 10              | 9 <b>1</b> 0<br>V | -<br>-         | 1.6                              |
|   | 200          | 0.02     | : 0                                                                                                                                                                  | , 10<br>/ 10                                                                                                                      | ; <b>15</b>   | 202          | , 10<br>, 1           | <10             | ) <b>1</b> 0<br>V | ; 7            | <15<br>15                        |
|   |              |          | ?                                                                                                                                                                    | ,                                                                                                                                 |               | )            | •                     | ,               | <b>,</b>          | ,              |                                  |

Таблица 2 Результаты факторного анализа химических компонентов отложений мезозоя и кайнозоя скв. 463

| Компенент        | Факторнь<br>вращения | е нагрузки | после      | Компонент                | Факторые нагрузки после<br>вращения |           |            |  |
|------------------|----------------------|------------|------------|--------------------------|-------------------------------------|-----------|------------|--|
|                  | Фактор I             | Фактор II  | Фактор III |                          | Фактор I                            | Фактор II | Фактор III |  |
| SiO <sub>2</sub> | 0,09                 | 0,89       |            | " Cr                     | 0,93                                | -0,23     | •          |  |
| Al, 0,           | 0,29                 | -0,71      | 0,14       | Ni                       | 0,85                                |           | -0,44      |  |
| CaO              | -0,42                | 0,64       | 0,48       | · V                      | 0,90                                |           |            |  |
| MgO              | 0,18                 | 0,52       | 0,17       | Cu                       | 0,82                                |           |            |  |
| Na, O            | 0,53                 | 0,61       |            | Co                       | 0,84                                | -0,10     | 0,46       |  |
| κ, Ο             | 0,57                 | -0,63      | 0,06       | Pb                       |                                     |           | -0,57      |  |
| co,              | -0,38                | 0,61       | 0,56       | Ga                       | 0, <del>6</del> 7                   |           | 0,14       |  |
| Copr             | 0,34                 | 0,13       | 0,69       | Ge                       | 0,57                                |           |            |  |
| Fe               | 0,45                 | 0,63       |            | Мо                       | 0,13                                |           | -0,86      |  |
| Mn               |                      | -0,24      | -0,36      | Вкладв ди<br>персию, %   | ic• 42,01                           | 60 12,689 | 9,9708     |  |
|                  |                      |            |            | .Суммарная<br>дисперсия, | • 42,01<br>%                        | 60 54,705 | 5 64,6763  |  |

#### Таблица З

#### Стратиграфическое распределение значений факторов для химических компонентов отложений мезозоя и кайнозоя скв. 483

|              | Стратиграфинаское | Факто    | рные значения посл | те вращения |
|--------------|-------------------|----------|--------------------|-------------|
| № обр.       | подразделение     | Фактор I | Фактор II          | Фактор III  |
| 1            | 2                 | 3        | 4                  | 5           |
| 1-1-70-72    | Плейстоцен        | 0,29     | -0,51              | 0,55        |
| 3-2-48-50    | Нижний плиоцен    | -0,02    | 0,35               | 0,25        |
| 4-3-20-22    | Верхний миоцен    | 0,05     | 0,26               | 0,31        |
| 5-1-63-65    | Верхний олигоцен  | -0,02    | 1,65               | -0,35       |
| 6-3-59-61    | Тоже              | 0,07     | 0,63               | 0,76        |
| 7-1-61-63    | Нижний-средний    | -0,45    | 1,64               | -0,83       |
|              | зоцен             |          |                    |             |
| 8-2-54-56    | Нижний маастрихт  | -1,49    | -2,41              | -3,96       |
| 8-3-34-36    | Тоже              | 0,19     | 1,02               | 0,40        |
| 9-1-30-32    | **                | 0,10     | 0,26               | 0,67        |
| 10-1-78-80   | ,,                | 0.09     | 0.23               | 0,47        |
| 11-1-72-74   | **                | -0.26    | 0.61               | -0,14       |
| 12-1-30-32   | **                | -0.38    | 1,00               | 0,44        |
| 13-1-72-74   | **                | 0.38     | 1,38               | 0,41        |
| 14-1-84-86   | **                | 0.44     | 1,50               | 0,47        |
| 15-2-70-72   | **                | -0.01    | 0,50               | 0,45        |
| 16-2-80-82   | **                | 0.29     | 1,25               | 0,27        |
| 17-1-86-88   | ••                | 0,32     | 1,32               | 0,34        |
| 19-1-70-72   | **                | -0,17    | -0,23              | 1,09        |
| 20-1-70-72   | **                | 0.31     | 1,28               | 0,26        |
| 21-1-70-72   | Нижний маастрихт  | -0.21    | 1,35               | -0,30       |
| 22-2-121-123 | Верхний кампан    | 0.29     | 1.40               | 0,15        |
| 24-1-93-95   | Тоже              | -0,23    | 0,43               | -0,003      |
| 25-1-23-25   | **                | 0.12     | 0,94               | 0,13        |
| 26-1-118-120 | Верхний турон-    | -0,01    | 1,31               | -0,13       |
|              | Конрык            |          |                    |             |
| 27-1-118-120 | То же             | 0,05     | 1,13               | 1,22        |
| 30-1-100-102 | **                | -0,44    | 0,36               | -0,09       |
| 14           |                   |          |                    |             |

| 1                          | 2                | 3     | <b>44</b> * |        |
|----------------------------|------------------|-------|-------------|--------|
| 22-1-61-63                 | Средний турон    | -0,01 | 0,59        | -0,05  |
| 33 - 1 - 32 - 34           | То же            | -0,12 | -0,67       | 0,51   |
| 28-1-40-41                 | Нижний турон     | -0,19 | 0,29        | 0,06   |
| 42-1-50-51                 | Средний-верхний  | -0,12 | 1,05        | -0,19  |
| 43-1 00 01                 | сеноман          |       |             |        |
| 48-1-64-66                 | Верхний альб     | 0,15  | -0,31       | -0,004 |
| 50-1-64-65                 | Тоже             | 0,01  | -0,29       | 0,05   |
| 55-1-4-5                   | Средний альб     | -0,56 | -1,10       | -0,03  |
| 55-1-35-36                 | Верхний апт-ниж- | -0,53 | 0,06        | -0,08  |
|                            | ний альб         |       |             |        |
| 57-1-22-23                 | То же            | 0,04  | -0,60       | 0,58   |
| 58-2-97-98                 | **               | 0,01  | -1,09       | 0,56   |
| 59-1-65-67                 | **               | -0,38 | -0,31       | 0,06   |
| 60-1-75-78                 | **               | 6,31  | -1,54       | 1,05   |
| 60-4-81-82                 | **               | 0,79  | -1,33       | 1,58   |
| 61-1-27-28                 | **               | -0,22 | -0,85       | 0,40   |
| 62-1-15-16                 | **               | -0,10 | -0,88       | 0,48   |
| 63-1-104-105               | **               | -0,34 | -0,32       | 0,14   |
| 64-2-82-84                 | **               | -0,49 | -0,06       | -0,02  |
| 65-1-30-31                 | **               | 0,91  | -0,55       | -0,31  |
| 66-3-16-18                 | Нижний апт       | -0,09 | -1,01       | 1,10   |
| 67-1-25-27                 | То же            | 0,31  | -0,58       | 0,31   |
| 69-3-15-16                 | ··               | -0,46 | 1,59        | -0,13  |
| 70 <b></b> 5 <b></b> 99100 |                  | 2,94  | 0,34        | 5,32   |
| 71-4-41-42                 | ••               | -0,48 | 0,53        | -0,18  |
| 72-2-104-105               | ~                | -0,45 | -1,43       | -0,29  |
| 73–3–18–19                 | **               | -0,06 | -1,55       | 0,03   |
| 74–1–69–70                 | "                | -0,27 | -1,45       | 0,03   |
| 75—1—78—7 <del>9</del>     | **               | -0,76 | 0,35        | -0,44  |
| 77_1_0_1                   | **.              | 0,97  | -0,27       | -0,25  |
| 81-1-26-27                 | Верхний баррем   | -0,49 | -0,44       | 0,10   |
| 82-1-25-26                 | То же            | -0,56 | -1,33       | 0, 19  |
| 83-1-86-87                 | **               | -0,07 | -1,22       | 0,15   |
| 85-1-100-101               | **               | -0,47 | -0,23       | 0,77   |
|                            |                  |       |             |        |

#### Таблица З (окончание)

#### Ассоциации, выявляемые на основе данных химического анализа, пересчитанных на БТККВ (табл. 4—6; рис. 3)

Ассоциация IA(+): MgO(0,37), FeO(0,35). Данная группировка соответствует фазам, содержащим избыточные количества Mg и Fe сравнительно со средним составом литосферы. Наиболее выраженные ее проявления наблюдаются в красноцветных (розовых, бурых) известняках верхнего апта — нижнего альба (обр. 60—1—75—78 и 60—4—11—62), обогащенных измененным вулканокластическим материалом основного состава и гидроокислами железа, рассеянными в карбонатной основной массе (см. рис. 3). Отмечается также развитие этой ассоциации в интервалах, обогащенных основной вулканокластикой и развитыми по ней гидроокислами железа: в туфогенных известняках нижнего апта, в среднем альбе—коньяке.

Ассоциация IB(-): Na<sub>2</sub>O(-0,58), P(-0,82), Cu(0,35), Co(-0,56), Pb(-0,95), Ga(-0,89), Mo(-0,79). Рассматриваемый набор компонентов представлен, по всей вероятности, фосфатными соединениями указанных тяжелых металлов, сформировавшимися в ходе преобразования вулканокластического материала в глинистые фазы. Следует отметить несколько интервалов четкого обособления ассоциации: нижние слои оливково-серых известняков верхнего баррема, пестроцветных известняков верхнего апта-нижнего альба и фораминиферово-нанномикритовых илов нижнего зоцена-плейстоцена. Обращают на себя внимание относительно повышенные значения факторных значений этой группировки на уровнях, отвечающих седиментационным перерывам: границе верхнего

Таблица 4 Химический состав отложений мезозоя и кайнозоя скв. 463 (вес.% в пересчете на БТККВ)

| М° обр.                      | CaO      | MgO    | Na <sub>2</sub> O | К,0                | Fе <sub>вал</sub> | Mn <sub>вал</sub> | Рвал           |
|------------------------------|----------|--------|-------------------|--------------------|-------------------|-------------------|----------------|
| 1-1-70-72                    | <u> </u> | 9,960  | 51,304            | 13,558             | 21,542            | ⊦                 | ⊢              |
| 3-2-48-50                    | -        | 5,633  | 73,435            | 14,632             |                   | 2,610             | 3,229          |
| 4-3-20-22                    | 23,354   | 11,526 | 45,352            | 7,082              | 8,212             | 1,770             | 2,486          |
| 5-1-63-65                    | 34,874   | _      | 42,075            | 8,877              | 10,643            | 1,354             | 1,807          |
| 6-3-59-61                    | 34,021   | 10,468 | 35,236            | 8,458              | 8,692             | 1,379             | 1,379          |
| 7-1-61-63                    | 30,740   | _      | 43,278            | 9,546              | 7,637             | 5,728             | 2,546          |
| 8-2-54-56                    | 43,244   | -      | 8,051             | 4,575              | 41,925            | 1,144             | 0,704          |
| 8-3-34-36                    | 16,293   | 14,674 | 52,364            | 7,901              | 6,527             | 0,442             | 1,423          |
| 9-1-30-32                    | 28,629   | 19,779 | 37,672            | 10,197             | 2,116             | 0,308             | 1,039          |
| 10-1-78-80                   | 41,752   | -      | 34,750            | 12,679             | 9,520             | 0,299             | 0,726          |
| 11-1-72-74                   | 5,027    | -      | 59,985            | 10,724             | 22,788            | 0,377             | 0,796          |
| 12-1-30-32                   | 18,092   | 27,655 | 35,319            | 7,663              | 4,998             | 5,331             | 0,666          |
| 13-1-72-74                   | 25,624   | 2,063  | 57,079            | 8,528              | 5,474             | 0,357             | 0,754          |
| 14-1-84-86                   | 10,708   | 5,921  | 68,530            | 9,490              | 3,821             | 0,395             | 0,810          |
| 15-2-70-72                   | 9,711    | 21,999 | 55,687            | 11,090             | -                 | -                 | 1 <i>,</i> 079 |
| 1628082                      | 31,750   | -      | 49,167            | 10,73 <del>9</del> | 6,951             | 0,351             | 0,742          |
| 17-1-86-88                   | 26,679   | -      | 54,652            | 10,162             | 7,155             | 0,343             | 0,723          |
| 19–1–70–72                   | 50,319   | 10,848 | 27,710            | 5,024              | 4,834             | 0,305             | 0,685          |
| 20-1-70-72                   | 17,525   | -      | 57,460            | 12,083             | 11,398            | 0,386             | 0,814          |
| 21-1-70-72                   | 13,210   | -      | 57,866            | 9,359              | 17,649            | 0,481             | 1,016          |
| 22-2-121-123                 | 12,709   |        | 58,890            | 10,847             | 15,828            | 0,447             | 0,908          |
| 24—1—93—95                   | 34,213   | 15,083 | 25,016            | 8,461              | 16,187            | _                 | 0,736          |
| 25-1-23-25                   | 11,586   | -      | 59,743            | 12,349             | 14,161            | 0,906             | 0,906          |
| 26-1-118-120                 | -        | 24,218 | 47,943            | 6,920              | 17,052            | 0,989             | 2,4/1          |
| 27-1-118-120                 | 48,461   | 3,986  | 22,742            | 8,909              | 14,536            | 0,703             | 0,469          |
| 30-1-100-102                 | 44,646   | 10,937 | 29,700            | 7,569              | 5,132             | 0,898             | 0,898          |
| 33-1-61-63                   | 3,201    | -      | 50,383            | 14,707             | 28,071            | 1,809             | 0,881          |
| 34-1-32-34                   | 45,637   | 11,225 | 18,988            | 8,807              | 13,745            | 0,713             | 1.020          |
| 38-1-40-41                   | 43,054   | 0,384  | 29,359            | 7,052              | 12 701            | 0,776             | 0.517          |
| 43-1-50-51                   | 36,192   | 23,783 | 19,900            | 4,912              | 10,225            | 0,776             | 0,517          |
| 48-1-64-66                   | 28,011   | 2,059  | 38,770            | 9,039              | 19,230            | 2 036             | 3 167          |
| 5010405                      | 24,825   | 1,244  | 35,795            | 20,564             | 33 985            | 2,030             | 1,365          |
| 55-1-4-5                     | -        | 20,000 | 20 220            | 10,270             | 12 591            | 1 144             | 1 140          |
| 50-1-30-30                   | 0.509    | 50 508 | 20,230            | 11 691             | 13.355            | 0 277             | 1.664          |
| 5/-1-22-23                   | 0,508    | 42 307 | 27,381            | 28 369             | -                 | _                 | 1.701          |
| 50-2-97-90<br>50 1 65-87     | _        | 48 877 | 34 683            | 15 441             | _                 | _                 | 0.535          |
| 59-1-05-07<br>60-1-75-78     | _        | 17 779 | 17 424            | 16 154             | 47.954            | _                 | _              |
| 60_1_91_92                   | _        | 52 728 | 19 937            | 7 821              | 18,399            | -                 | 0.962          |
| 61_1_27_28                   | _        | 45 601 | 31 654            | 19 585             | _                 | _                 | 2.674          |
| 62_1_15_16                   | _        | 56 085 | 24.080            | 10,146             | 7.925             | _                 | 1.524          |
| 63_1_104_105                 | -        | 5.237  | 67.728            | 24.401             |                   | -                 | 1,904          |
| 64-2-82-84                   | 4.166    | 14.877 | 44.376            | 14,792             | 16,322            | 3,315             | 1,530          |
| 65-1-30-31                   | 22.058   | 9.030  | 27,992            | 14,125             | 22,897            | 1,741             | 1,741          |
| 66-3-16-18                   | 7.161    | 13,994 | 32.817            | 22,669             | 20,582            | 1,882             | 0,655          |
| 67-1-25-27                   | 7.712    | 18,832 | 44,260            | 16,318             | 9,165             | 1,453             | 1,956          |
| 693-15-16                    | _        | 12,823 | 23,635            | 24,288             | 33,491            | 4,777             | 0,704          |
| 70-5-99-100                  | 42,739   | 8.144  | 12,427            | 5,656              | 29,514            | 0,763             | 0,399          |
| 71-4-41-42                   | _        | _      | 42,979            | 22,631             | 26,751            | 5,959             | 1,458          |
| 72-2-104-105                 | 1,982    | 17,364 | 32,112            | 21,408             | 21,170            | 4,361             | 1,110          |
| 73-3-18-19                   | 13,611   | 1,104  | 25,225            | 19,392             | 36,734            | 2,155             | 1,577          |
| 74-1-69-70                   | 13,186   | 23,408 | 22,519            | 15,889             | 21,890            | 1,667             | 1,259          |
| 75—1 <i>—</i> 78 <b>—</b> 79 | 27,444   | 29,565 | 14,461            | 6,106              | 20,246            | 1,607             | 0,321          |
| 77-1-0-1                     | 31,920   | 11,601 | 32,137            | 11,241             | 8,647             | 3,459             | 0,576          |
| 81-1-26-27                   | <b>-</b> | 51,830 | 42,415            | 4,655              | -                 | -                 | 0,517          |
| 82-1-25-26                   | 22,204   | 23,961 | 20,111            | 14,504             | 16,447            | 0,934             | 1,645          |
| 83-1-86-87                   | _        | 30,133 | 28,898            | 16,007             | 23,097            | 0,806             | 0,752          |
| 85-1-100-101                 | -        |        | 80,412            | 15,300             | -                 | -                 | 3,202          |

| Ņ    |
|------|
| Jax. |
| 215  |
| 0    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0,032<br>0,032<br>0,032<br>0,033<br>0,034<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035<br>0,035 | 0,048<br>0,019<br>0,044<br>0,042<br>0,042<br>0,064<br>0,064<br>0,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ç   |
| 0,027<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,044<br>0,044<br>0,044<br>0,044<br>0,044<br>0,044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N   |
| 0,044<br>0,057<br>0,057<br>0,057<br>0,057<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055<br>0,055 | 0,069<br>0,069<br>0,067<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <   |
| 0,083<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,087<br>0,0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,047<br>0,047<br>0,124<br>0,092<br>0,127<br>0,127<br>0,127<br>0,127<br>0,127<br>0,127<br>0,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ç   |
| 0,044<br>0,045<br>0,046<br>0,047<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046<br>0,046 | 0,028<br>0,028<br>0,045<br>0,046<br>0,046<br>0,046<br>0,048<br>0,048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6   |
| 0,023<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028<br>0,028 | 0,0048<br>0,0045<br>0,0045<br>0,0045<br>0,0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PB  |
| 0,011<br>0,021<br>0,021<br>0,021<br>0,022<br>0,012<br>0,012<br>0,013<br>0,014<br>0,015<br>0,015<br>0,016<br>0,017<br>0,025<br>0,016<br>0,017<br>0,025<br>0,017<br>0,025<br>0,017<br>0,025<br>0,017<br>0,025<br>0,017<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,025<br>0,0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,004<br>0,022<br>0,022<br>0,022<br>0,022<br>0,022<br>0,023<br>0,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ga, |
| 0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000000                                                                                                                                                                                                                                                         | -<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000000 | Ĝ   |
| 0,005<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,007<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,000<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,006<br>0,00000000                                                                                                                                                                                                                                               | 0,005<br>0,005<br>0,007<br>0,007<br>0,007<br>0,007<br>0,007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mo  |

#### Таблица 5

#### Результаты факторного анализа (R-анализа) химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 463

| Компонент         | Факт<br>после | орные нагр<br>э вращения | рузки<br>I | Компонент    | Факторные нагрузки после<br>вращения |          |            |  |
|-------------------|---------------|--------------------------|------------|--------------|--------------------------------------|----------|------------|--|
|                   | Фактор І      | Фактор II                | Фактор III |              | Фактор I                             | Фактор І | Фактор III |  |
| CaO               | 1             | ,<br>0,18                | -0,81      | Cu           | -0,35                                | 0,40     | 0,70       |  |
| Mg                | 0,37          |                          | 0,24       | Co           | -0,56                                | 0,45     | 0,57       |  |
| Na <sub>2</sub> O | -0,58         |                          |            | Pb           | -0,95                                | -0,01    | 0,12       |  |
| K <sub>2</sub> O  |               | 0,29                     | 0,53       | Ga           | -0,85                                |          | 0,10       |  |
| Fe                | 0,35          | -0,05                    | -0,72      | Ge           | -0,22                                | 0,44     | 0,66       |  |
| Mn                |               |                          | 0,73       | Мо           | -0,79                                |          | 0,20       |  |
| P                 | -0,82         | -0,32                    | -0,11      | Вклад в      | 35 0247                              | 18 2472  | 16 2391    |  |
| Cr                | -0,001        | 0,96                     |            | дисперсию. % | 60,02 ··                             | 10,2472  | 10,2001    |  |
| Ni                | -0,20         | 0,92                     |            | Суммарная    | 35.0247                              | 53.2719  | 69 5110    |  |
| v                 | -0,05         | 0,93                     |            | дисперсия, % |                                      | 00,2710  | 00,0110    |  |

#### Таблица б

#### Стратиграфическое распределение значений факторов для химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 463

|              | Стратиграфическое       | Фактор   | ные значения после | вращения      |
|--------------|-------------------------|----------|--------------------|---------------|
| № обр.       | подразделение           | Фактор І | Фактор II          | Фактор III    |
| 1            | . 2                     | 3        | 4                  | 5             |
|              | r                       |          | •                  |               |
| 1-1-70-72    | Плейстоцен              | 0,38     | -3,31              | 0,25          |
| 3-2-48-50    | Нижний плиоцен          | -1,11    | 0,18               | 1,07          |
| 4-3-20-22    | Верхний миоцен          | -0,02    | -0,38              | 0,87          |
| 5-1-63-65    | Верхний олигоцен        | 0,62     | 0,64               | -0,78         |
| 6-3-59-61    | То же                   | -0,28    | 0,54               | -0,49         |
| 7-1-61-63    | Нижний-средний зоцен    | -1,24    | 1,02               | -0,63         |
| 8-2-54-56    | Нижний маастрихт        | -0,38    | 0,67               | -1,06         |
| 8-3-34-36    | Тоже                    | -0,38    | 0,55               | -0,33         |
| 9-1-30-32    | ··                      | 0,22     | 0,0004             | -0,34         |
| 10-1-78-80   | **                      | -0,10    | 0,17               | -0,56         |
| 11-1-72-74   |                         | -0,34    | 0,34               | -0,56         |
| 12-1-30-32   | "                       | 0,27     | 0,22               | -0,85         |
| 13-1-72-74   | "                       | -0,08    | -2,84              | -0,49         |
| 14-1-84-86   | "                       | -0,16    | 0,37               | -0,31         |
| 15-2-70-72   | **                      | -0,39    | 0,56               | 1,12          |
| 16-2-80-82   | **                      | -0,20    | 0,39               | 0,65          |
| 17-1-86-88   | **                      | -0,19    | 0,32               | -0,66         |
| 19-1-70-72   | **                      | 0,34     | 0,38               | 0,69          |
| 20-1-70-72   | ··                      | -0,35    | 0,47               | -0,55         |
| 21-1-70-72   | "                       | -0,70    | 0,80               | -0,50         |
| 22-2-121-123 | Верхний кампан          | -0,52    | 0,65               | 0,49          |
| 24-1-93-95   | То же                   | 0,53     | 0,42               | 0,07          |
| 25-1-23-25   |                         | 0,55     | 0,51               | -0,47         |
| 26-1-118-120 | Верхний турон-коньяк    | -0,37    | 0,44               | 0,07          |
| 27-1-118-120 | Тоже                    | 1,02     | -0,18              | -1,12         |
| 30-1-100-102 |                         | 0,43     | -0,12              | -0,85         |
| 33-1-61-63   | Средний турон           | -0,49    | 0,41               | -0,53         |
| 34-1-32-34   | То же                   | 0,93     | -0,42              | -1,10         |
| 38-1-40-41   | Нижний турон            | 0,21     | 0,23               | -0,78         |
| 43-1-50-51   | Средний-верхний сеноман | 0,90     | 0,15               | -1, <b>09</b> |
| 48-1-64-66   | Верхний альб            | 0,14     | -0,08              | 0,66          |

| 1                   | 2                       | 3     | 4     | 5     |
|---------------------|-------------------------|-------|-------|-------|
| 50-1-64-65          | Верхний альб            | -0.62 | -0.06 | -0.16 |
| 55-1-4-5            | Средний альб            | 0.80  | -0.34 | 0.52  |
| 56-1-35-36          | Верхний апт-нижний альб | 0.18  | 0.27  | -0.71 |
| 57-1-22-23          | Тоже                    | 0.15  | -0.19 | 0.22  |
| 58-2-97-98          | "                       | -0.02 | -3.27 | 2.44  |
| 59-1-65-67          | "                       | 0.03  | 0.45  | 1.96  |
| 60-1-75-78          | "                       | 5.59  | 2.33  | 2.65  |
| 60-4-81-82          | "                       | 1.71  | -1,14 | 0.36  |
| 61-1-27-28          | "                       | -0.48 | 0.27  | 1.97  |
| 62-1-15-16          | <i>!!</i>               | 0,56  | -0,49 | 0.76  |
| 63-1-104-105        |                         | -1.35 | 0.70  | 2.48  |
| 64-2-82-84          | "                       | -1.09 | 1.00  | 0.24  |
| 65-1-30-31          |                         | 0,59  | 0,46  | -0.14 |
| 66-3-16-18          | Нижний апт              | 0,25  | -0,38 | -0,14 |
| 67-1-25-27          | То же                   | -0,49 | -0,22 | 0,04  |
| 69-3-15-16          | **                      | -0,11 | -0,82 | 0,49  |
| 70-5-99-100         | **                      | 1,28  | 0,84  | -1,17 |
| 71-4-41-42          | **                      | -0,58 | -1,27 | 0,23  |
| 72-2-104-105        | **                      | 0,69  | 0,40  | 0,33  |
| 73–3–18–19          | **                      | 0,14  | -2,18 | 0,13  |
| 74—1 <i>—</i> 69—70 | **                      | 0,41  | -1,03 | -0,50 |
| 75-1-78-79          | **                      | 0,83  | 0,35  | -1,06 |
| 77-1-0-1            |                         | -0,48 | 0,79  | -0,41 |
| 81-1-26-27          | Верхний баррем          | -0,48 | 0,96  | 1,86  |
| 82-1-25-26          | То же                   | 0,39  | -0,98 | -0,47 |
| 83-1-86-87          | "                       | 0,14  | 0,52  | Ò,61  |
| 85—1—100—101        | "                       | -2,35 | 0,99  | 2,55  |

Таблица 6 (окончание)

турона—коньяка и верхнего кампана, а также границе маастрихта и нижнего эоцена (см. рис. 3). В последнем случае уместно допустить обогащение фосфатными соединениями переотлагаемых остаточных продуктов растворения карбонатных осадков.

Ассоциация IIA(+): Cr(0,96), Ni(0,92), V(0,93), Cu(0,40), Co(0,45), Ge(0,44). Минеральная природа данной группировки тяжелых металлов остается недостаточно ясной. Однако наиболее яркие ее проявления наблюдаются преимущественно на тех же уровнях, где и рассмотренные выше ассоциации IA(+) и IB(-), представленные продуктами изменения основного вулканокластического материала (см. рис. 3).

Ассоциация IIB(–): К<sub>2</sub>O(–0,29), Р (–0,32). Распространение ассоциации локализовано интервалами, в которых наблюдается отчетливое развитие калийсодержащих глинистых минералов: К-смектитов, смешаннослойных фаз иллит-монтмориллонит, собственно иллита, сформировавшихся по основному и среднему вулканокластическому материалу. Можно считать, что рассматриваемая группировка компонентов представлена соединениями фосфора, сорбированными калийсодержащими глинистыми минералами. В разрезе четко обособляется интервал выраженного развития этой ассоциации: верхний баррем-нижний альб; отмечаются также ее отдельные проявления в маастрихте и плейстоцене (см. рис. 3).

Ассоциация IIIA(+): MgO(0,24), K<sub>2</sub>O(0,53); Cu(0,70), Co(0,57), Ge(0,66). Набор компонентов с очевидностью указывает на то, что ассоциация представлена специфической разновидностью калийсодержащих глинистых минералов, развитых по основной и средней вулканокластике. В разрезе выделяются два четких максимума факторных значений этой ассоциации, соответствующие оливково-серым известнякам нижнего баррема и особенно пестроцветным известнякам верхнего апта—нижнего альба.

Ассоциация IIIB(—): CaO(—0,81), Fe(—0,72), Mn(—0,73). Минеральная природа этой ассоциации не поддается достоверной интерпретации. Обращает на себя внимание сравнительно монотонное ее развитие в осадках от верхнего альба до верхнего миоцена, в меньшей мере — в породах верхнего баррема, нижнего апта. Отсутствие этой группи-

|                                         |                    |         |        | ď,         | Литология                                             | 201             | No - 4-                  | Факторные значения ассоциации посль вращения |                           |                                  |                            |                                       |              |
|-----------------------------------------|--------------------|---------|--------|------------|-------------------------------------------------------|-----------------|--------------------------|----------------------------------------------|---------------------------|----------------------------------|----------------------------|---------------------------------------|--------------|
| Стратиграфичес-<br>Кис<br>подразделения |                    | Серия   | KEPHAI | w<br>Walau | o buya.A<br>supobar-<br>supobar-<br>dibazumb          | Nº обр.         | IA(+)<br>0,5 1,0 1,5 2,0 | IB()<br>0,5 1,0 1,5 2,0                      | IIA(+)<br>0,5 1,0 1,5 2,0 | <b>IIB</b> ()<br>0,5 1,0 1,5 2,0 | IIIA(+)<br>0,5 1,0 1,5 2,0 | IIIB()                                |              |
| <del>ار</del>                           | а плейстоцен       | 1.1.    | t      |            |                                                       | www             | 1-1-70-72                |                                              |                           |                                  | 331                        | 81                                    |              |
| ) 'Z                                    | Нижний плиоцен     | Ré:     |        | <u>∞</u>   | <u> </u> <u></u>                                      | mmm             | 3-2-48-50                |                                              | Hillin .                  | 8                                |                            | 888888                                |              |
| 15                                      | Верхний            | 0.82    | ١ĕ.    | 8          | │⊥ <sup>┿</sup> ┷ <sup>┿</sup> ┙ <u>┶╴</u> ┿          | <del>4</del>    | 4-3-20-22                |                                              |                           |                                  | <b>XX</b>                  |                                       |              |
| 3                                       | MUOYEN             | 1 25268 | 14     | 17         | ┶┶┶┶                                                  | L               | 5-1-63-65                |                                              | 155                       | *****                            |                            |                                       |              |
| 13                                      | S BEDITHIN O MULDE | 1 82883 | 1      | ١ð         | <u> </u>                                              | -               | 6-2-59-61                |                                              |                           |                                  |                            |                                       |              |
| Æ                                       | 🔨 Нитний зоцен     | 2020    |        |            | $\pm \bullet \pm \pm \bullet \pm \bullet \pm \bullet$ |                 | 7-1-61-63                | L                                            | 1611115                   |                                  |                            |                                       |              |
|                                         |                    |         |        | T          |                                                       | ¥//////         | 8-2-54-56                |                                              | 33                        |                                  |                            |                                       |              |
| ŀ                                       |                    |         |        |            |                                                       | <i>\/////</i>   | 8-3-34-36                |                                              |                           | ****                             |                            |                                       | N.           |
| 1                                       |                    |         |        |            |                                                       | ¥/////          | 9-1-30-32                | N                                            |                           |                                  |                            |                                       | 282          |
|                                         |                    |         |        | 1          |                                                       | <i>V/////</i>   | 10-1-78-80               |                                              |                           | 8                                |                            |                                       | 3005<br>3009 |
|                                         |                    |         |        |            |                                                       | V//////         | 11-1-72-74               |                                              |                           | *                                |                            |                                       |              |
| 15                                      |                    | 0       |        |            |                                                       | ¥/////          | 12-1-30-32               | N ·                                          |                           | 8                                |                            |                                       | 200000       |
| <b>۲</b>                                | N Q                |         |        |            |                                                       | <i>Υ/////</i>   | 13-172-74                |                                              |                           |                                  | 2.84                       |                                       |              |
| ۱.                                      | 0 2                | 815     |        |            |                                                       |                 | 14-1-84-86               |                                              | Ш.                        | ***                              |                            |                                       |              |
| 10                                      |                    | 522     |        |            |                                                       |                 | 15-2-/0-72               |                                              |                           | ****                             |                            | 000000                                |              |
| 1                                       | i i                | 828     |        |            |                                                       | \$7/7/7/7       | 16-2-80-82               |                                              | 8                         |                                  |                            |                                       |              |
| 1.1                                     |                    | 0.25    |        | -          |                                                       | •//////         | 17-1-86-88               |                                              | 8                         |                                  |                            |                                       | 00000        |
|                                         | 10 X               | 208     | 18     | 12         |                                                       | V/////          | 19-1-70-72               |                                              |                           |                                  |                            |                                       |              |
| 6                                       |                    | 305     | LI     | 1.00       |                                                       | V/////          | 20-1-70-72               |                                              | 200                       |                                  |                            |                                       |              |
|                                         |                    | 2.38    | j.     | 11         |                                                       | X//////         | 21-1-70-72               |                                              | 11/11                     |                                  |                            | · · · · · · · · · · · · · · · · · · · |              |
| 5                                       | 5                  | 000     | 6      | l 🕰        |                                                       |                 | 22-2-121-123             | -                                            | 166                       |                                  | 1                          |                                       |              |
| I                                       | A Reaming          | 2.94    | 12     | 4          |                                                       | -               | 24-1-93-95               |                                              |                           |                                  |                            |                                       |              |
|                                         | кампан             | 0.60    | 1      |            |                                                       | -               | 25-1-23-25               | <u></u>                                      | 223                       |                                  |                            |                                       | 8388         |
|                                         | Annum -            | 222     | 1      | 1          |                                                       | tunnu           | 26-1-118-120             | •••••••                                      |                           | <b>i</b>                         | ******                     | *******                               |              |
|                                         |                    | 885     |        |            |                                                       |                 | 27-1-118-120             | V////                                        | 610 <sup>1</sup>          | 0000                             | 81                         | <u> </u>                              | Sec. 333     |
| ₹                                       | коньяк             | 1. 65   |        | 1          |                                                       | -               | 20-1-100-102             |                                              |                           |                                  | 801<br>10                  |                                       | 66666666     |
| 1                                       |                    | 253     |        |            | ┟┶╋┄╴╇┟┲╹┰┪                                           | <b>∃</b> °∧°∧°∧ | 30-1-100-102             |                                              | 2.5.8                     | ****                             | Pi                         |                                       | 0.00000000   |
|                                         | Средний            | 523     |        |            |                                                       | Hatata<br>A     | 24 1 22 24               |                                              | 0000                      |                                  | 0000                       | <u> </u>                              |              |
|                                         | Ingpon             | 228     | 1      |            | <b>──────</b>                                         |                 | 2914041                  | <u></u>                                      | ł                         | 88                               |                            | <b>├</b> ────                         |              |
|                                         | mummuu mypon       | 6       | 1      |            |                                                       | <i>\/////</i>   | 421.50 51                | Rive                                         |                           | 8                                | +                          | l                                     |              |
|                                         | CENDARTH           | ľ       | Í      |            |                                                       |                 | 40 1 64 66               | <u></u>                                      | ł                         | M                                |                            | <u> </u>                              |              |
|                                         | Bepznyu            |         | 1      |            |                                                       | d               | 40-1-04-00               | P                                            | 2202                      | ·                                | 8                          |                                       | 500000       |
| 1                                       | <i>a.</i> 760      |         |        | 1          |                                                       | V77/7/2         | 00-1-04-00               | 1                                            | Hille.                    |                                  | 18                         |                                       | 82           |

|     |          | CASTA     |          |                     |          |       |                                | 1111             | 55-1-4-5     | 7        |            |             |     | <b>**</b> | 888           |         |     |  |
|-----|----------|-----------|----------|---------------------|----------|-------|--------------------------------|------------------|--------------|----------|------------|-------------|-----|-----------|---------------|---------|-----|--|
|     |          |           |          | I                   |          |       |                                | /////            | 56-1-35-36   |          |            |             | **  |           |               |         |     |  |
|     |          |           |          | 56.                 |          |       |                                | /////            | 57-1-22-23   | N        | _          |             |     | 8         |               |         |     |  |
|     |          | 0         | 2        | 5.5                 | <b>m</b> | i .   |                                | ////X            | 58-2-97-98   |          |            |             |     |           |               |         |     |  |
|     |          | DEDITHUM  | 3        | 535                 | 17       | 5     |                                | $\eta \eta \eta$ | 59-1-65-67   |          |            |             | *** |           |               |         |     |  |
|     |          | anm-      | ÈΣ       | 398                 | 2        | 6     |                                |                  | 60-1-75-78   |          | 5.59       |             |     |           | 2.650000      |         |     |  |
|     |          | нижний    | 9 X      | 525                 | 6        | ι Υ   | ┟╧╤└╶╌┼╡╌╶╤╧┣▓                 |                  | 60-4-81-82   |          |            |             |     |           | 88            |         |     |  |
|     | •        | 4,160     | 3        | 2.3                 | 18       | ο     |                                |                  | 61-1-27-28   | E        |            | 3           | **  |           |               |         |     |  |
|     |          |           | 8.0      | 2.5                 | ĮΫ       | 2     |                                |                  | 62-1-15-16   |          |            |             |     | ***       | 22222         |         |     |  |
|     | 0        |           | 50       | 552                 | 5        | 4     |                                |                  | 63-1-104-105 |          |            | 1. 2. NY NE |     |           |               |         |     |  |
|     | ¥        |           | 10       | 233                 |          |       |                                |                  | 64-2-82-84   | E        |            | le spiri    |     |           | 8             |         |     |  |
| 1.2 |          |           |          | 190                 |          |       | ┝╧┑╧╤┼┑╩╤╧╋                    |                  | 65-1-30-31   | E        |            | i de        | *** |           |               |         |     |  |
| 0   |          |           |          | SERMANN             |          |       |                                |                  | 66-3-16-18   | 2        |            |             |     | **        |               |         |     |  |
| 5   | 2        |           |          | """"                | 18-      |       | ┥╤╘ <u>╤┥</u> ╣╨╤╨ <u>└</u> ┍╲ | $\infty$         | 67-1-25-27   | L        |            |             |     |           |               |         |     |  |
| 0   |          | Нимний СС | Typo     |                     | ΤΥΦΟΰωιΰ |       | 18                             | 1                |              | 20000    | 69-3-15-16 | L           |     |           |               |         | XXX |  |
| 2   | <b>`</b> |           | USBech   | USBECTHER           |          | 5     |                                | XXX              | 70-5-99-100  | - 6      |            |             |     |           |               |         |     |  |
| 0   | ≿        | anm       |          |                     | ιœ'      | lio - |                                |                  | 71-4-41-42   | L        |            | 1111.       |     |           | 8             |         |     |  |
| Į₹. | l≩       |           | <b>x</b> | и лиакоа<br>зеленый |          |       |                                | /////            | 72-2-104-105 |          |            | 15.84       |     |           | 8             |         |     |  |
|     | 2        |           | 820      | 4 68 Abil           |          | ഹ     | 600                            | 77774            | 73-3-18-19   | <u> </u> |            |             |     |           | R             |         |     |  |
|     | 2        |           | 3822     | NAK                 | 8        | 2     |                                | 3666R            | 74-1-69-70   | - 6      |            |             |     |           |               |         |     |  |
|     | N .      |           | 8888     | X                   | Ĩ.       | 8     |                                |                  | 75-1-78-79   | - 6      |            |             | **  |           |               |         |     |  |
|     |          |           | 983£     | 63. 8               | 18       | 1.    |                                |                  | 77.1-0-1     |          |            |             |     |           |               | 888<br> |     |  |
|     |          | Reamui    | 62860    | 29.20               | 17       | 2     |                                |                  | 81-1-26-27   |          |            | 1.11        |     |           |               |         |     |  |
|     | 1        | banoem    | 5262     | 200                 |          | 6     |                                |                  | 82-1-25-26   | 2        |            |             |     |           |               |         |     |  |
|     |          |           | 3953     | 1260                |          |       | 099111072                      |                  | 83-1-86-87   | 1        |            |             |     |           | XXX           |         |     |  |
| L   |          | I         | <u> </u> |                     |          | L     |                                | 8888 B           | 85-1-100-101 |          |            | 235         |     |           | XXXX 2.55XXXX |         |     |  |



Рис. 3. Стратиграфическое распределение факторных значений главных парагенетических ассоциаций химических компонентов в пересчете на БТККВ в разрезе постюрских отложений скв. 463 Условные обраначения см. на рис. 2 ровки в красноцветных отложениях, содержащих свободные гидроокислы Fe и Mn, позволяет исключить возможность ее гидроокисного состава и допустить наличие некоторой Fe, Mn, Ca-смектитовой фазы, развитой по основной вулканокластике, силикатной примеси в карбонатных отложениях.

#### СРЕДНИЕ СОДЕРЖАНИЯ И СКОРОСТИ АККУМУЛЯЦИИ КОМПОНЕНТОВ (ТАБЛ. 7; РИС. 4—6)

Распределение средних содержаний. В предыдущем разделе было рассмотрено распределение в разрезе содержаний компонентов для конкретных образцов и их формы нахождения. Для выявления общих тенденций геохимической истории седиментации рассчитывались средние содержания для основных геохронологических подразделений. Если некоторый стратиграфический интервал слагается разнородными осадками (например, нижний апт), то среднее содержание вычислялось для каждого главного литологического типа.

В результате рассмотрения особенностей распределения средних содержаний компонентов (см. табл. 7; рис. 4,5) с учетом особенностей распределения их конкретных значений в исследуемом разрезе можно выделить три главных геохимических этапа: 1) раннемеловой (поздний баррем—поздний альб); 2) позднемеловой (поздний альб маастрихт); 3) кайнозойский (ранний зоцен—плейстоцен).

Ранне меловой этап характеризуется накоплением осадков с относительно невысокими содержаниями СаСО3 (как правило, не более 82%) и сравнительно повы-• Mn и связанных с ними тяжелых металлов. шенными количествами SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Отметим, что интервалы высоких концентраций SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe и Mn наблюдаются в карбонатных отложениях, обогащенных основным вулканокластическим материалом и гидроокислами Fe и Mn : нижнеаптских туфогенных известняках, богатых сапропелевым органическим веществом, и верхнеаптских—нижнеальбских пестроцветных известняках. При рассмотрении данных, пересчитанных на БТККВ (см. рис. 5), ярко проявляется ферромагнезиальный состав компонентов и продуктов их иллитизации (обогащение K<sub>2</sub>Q). Обращает на себя внимание выраженное эпигенетическое преобразование верхнеаптских-среднеальбских пестроцветных известняков: перекристаллизация СаСО3, наличие новообразованных (за счет изменения окисного вулканокластического материала) карбонатных молекул: MnCO<sub>3</sub>-FeCO<sub>3</sub>-MgCO<sub>3</sub>, нередко отчетливо диагностируемых под микроскопом, на дифрактограммах и устанавливаемых при нормативных пересчетах химических анализов (см. рис. 4).

Позднемеловой этап характеризуется осадками, представленными почти чистым писчим мелом (фораминиферово-нанномикритовым и наннофораминиферовым), с содержанием CaCO<sub>3</sub> обычно не менее 85% при относительно низких количествах Al<sub>2</sub>O<sub>3</sub>, Fe и Mn (см. рис. 4). О заметных количествах измененной в смектит-иллит вулканокластики и гидроокислах железа можно судить по содержаниям, пересчитанным на БТККВ (см. рис. 5), и приведенным в других разделах данным о распределении минеральных фаз.

Кайнозойский этап зафиксирован в осадках, сложенных главным образом фораминиферово-нанномикритовыми илами с содержанием CaCO<sub>3</sub> обычно около 90%. Примечательно, что в отложениях, залегающих непосредственно выше крупных седиментационных перерывов (нижний эоцен, верхний олигоцен, верхний миоцен), наблюдаются сравнительно повышенные содержания Мп и Р (см. рис. 4, 5), что отвечает наличию остаточных (после растворения) гидроокислов Мп и фосфатных реликтов.

Распределение средних скоростей аккумуляции компонентов. Для расчета средних скоростей аккумуляции компонентов в течение главных геохронологических интервалов были использованы материалы по стратиграфическому расчленению разреза [Initial Reports..., 1981], принятые участниками рейса хроностратиграфические и магнитостратиграфические шкалы [Berggren, 1973; Eysinga, 1975; Hinte, 1976; Initial Reports..., 1981; Larson, Hilde, 1975; Phanerozoic time scale, 1964]. Весьма ориентировочный, приближенный характер этих данных очевиден, однако их использование в сочетании со всей доступной геологической, литологической информацией позволяет осветить ряд аспектов геохимической истории седиментации.

Для расчета величин скоростей аккумуляции в весовых единицах

|                       | Г           | T                  | r                | r               |           |              |                   |                   |             |
|-----------------------|-------------|--------------------|------------------|-----------------|-----------|--------------|-------------------|-------------------|-------------|
| Стратиграфичес -      |             |                    |                  |                 | 1         |              |                   |                   |             |
| KOE<br>Redoarde cenus | SiOn        | AlaOa              | CaCO2            | Fe              | Min       | P            | MnCO3             | FeCO <sub>3</sub> | MgCO3       |
| noopasoe mena e       | 10 20 30 40 | 1 2 3 4            | 20 40 60 80      | 0,5 1,0 1,5 2,0 | 0,02 0,06 | 0,02 0,06    | 0,02 0,06         | 0,2 0,4 0,6 0,8   | Q2 Q4 Q6 Q8 |
| Плейстоцен            |             |                    |                  |                 |           |              | 0,0               | 0,0               | 0,0         |
| Веохний плионен       |             |                    |                  |                 |           |              | 0,0               | <b>م</b> ه        | 0,0         |
| Нижний плиоцен        | 1           |                    |                  | 8               |           |              |                   |                   | 0,0         |
| Верхний миацен        | 2           |                    |                  | 8               |           | V/V          | 0,0               |                   |             |
| Сревний миоцен        |             | [                  | Ţ                |                 |           |              |                   |                   |             |
| Нижний миоцен         |             |                    | 1                | 1               |           | L            |                   |                   |             |
| верхний олигоцен      |             | I                  |                  |                 |           |              | 0,0               | 0,0               | 0,0         |
| Нитний олигоцен       |             | T                  |                  |                 |           |              |                   |                   |             |
| Верхний зацен         |             |                    |                  |                 |           |              |                   |                   |             |
| Нижний зоцен          |             |                    |                  |                 |           |              | Q,O               | Q.P               | 0,0         |
| Средний зацен         |             | Γ                  |                  |                 |           | <u> </u>     | 0,0               | 0,0               | ••          |
| верхний палеоцен      |             | T                  |                  |                 | l         |              |                   |                   |             |
| Нижний палеоцен       |             |                    |                  |                 |           |              |                   |                   |             |
| Маастрихт             | 16          |                    |                  | B .             | **        | $\mathbb{N}$ | ٥,٥               | q,o               | 0,0         |
| Верхний кампан        | 2           | 1                  |                  | SC .            |           | Ν            | 0,0               | مە                | Q           |
| Нижний кампан         |             | Γ                  |                  |                 | <b>_</b>  | [            |                   |                   |             |
| Верхний сантон        | 1           | ļ                  |                  |                 |           |              | ļ                 |                   |             |
| Нижний сантон         | 1           |                    |                  |                 |           | L            |                   |                   |             |
| Верхний коньяк        |             |                    |                  | N.              | 88        |              |                   | 8                 | 0,0         |
| Нижний коньяк         | 2           |                    |                  | M               |           |              | KA.               | ŝ                 | م           |
| Верхний турон         |             |                    |                  | M               |           |              | 82                | 8                 | Q,O         |
| Средний туран         |             | 8                  |                  | W               |           |              | 684               |                   |             |
| Нижний турон          |             | *                  | 1111111111111111 | M               |           |              | 0,0               | 0,0               | م.ہ         |
| Верхний сеноман       |             |                    |                  | \$              |           | N            |                   | 1                 |             |
| Средний сеноман       |             | [                  |                  | X               |           |              |                   |                   |             |
| Нижний сеноман        |             | 1                  |                  |                 |           |              |                   | •                 |             |
| Верхний альб          |             |                    |                  | <b>W</b>        |           | $\sim$       |                   |                   |             |
| Средний альб          |             | 8                  |                  |                 |           |              |                   |                   |             |
| Нижпий альб           |             |                    |                  |                 |           |              |                   |                   |             |
| Верхний апт           |             |                    |                  |                 | **        |              | x <sup>x</sup> x. |                   |             |
|                       |             | 69995<br>2007      |                  | W               |           | N            |                   |                   |             |
| Намний апт (туф,      |             | 1000000<br>2000000 |                  |                 |           |              |                   |                   |             |
| Hummul anm (Krecmu-   |             |                    |                  | 8               |           | N            |                   |                   |             |
| верхний баррем        |             | 1995               |                  |                 | *         | N            |                   |                   |             |

Рис. 4. Распределение средних содержаний (вес.% в пересчете на воздушно-сухую навеску) SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и нормативных молекул MnCO<sub>3</sub>, FeCO<sub>3</sub> и MgCO<sub>3</sub> в разрезе постюрских отложений скв. 463

#### Средние содержания и средние скорости аккумуляции химических компонентов для главных геохронологических подразделений разреза постюрских отложений скв. 463

| Литолр-<br>гическое<br>подраз-<br>деление | Литология                                                                                        | Керны                | Интервал глу-<br>бин (от по-<br>верхности<br>дна), м | Мощность<br>м | Стратиграфическое<br>подразделение                                      | Керны                                                                |         |
|-------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|---------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------|
|                                           | 1                                                                                                | 1                    | <u> </u>                                             | 1             | <br>Плейстоцен<br>Верхний<br>Плиоцен                                    | 1–1 – 1–3<br>1–4 – 2–5                                               | f       |
| IA I                                      | Наннофосси-<br>пиевые́ илы                                                                       | 1 7<br>2-30          | 0,0—46,8                                             | 46,8          | Нижний<br>Верхний миоцен<br>Верхний олигоцен<br>Нижний—средний<br>эоцен | 2-6 - 3-2-110<br>3-2-110 - 4-CC<br>5-1-0 - 6-6-20<br>6-6-20 - 7-2-30 | )       |
| IB (                                      | Фораминифе-<br>хово-наннофос-<br>хилиевый                                                        | 7–2–<br>30–51–<br>CC | 46,8—452,0                                           | 405,2         | Нижний<br>маастрихт                                                     | 72-30 - 21-5-4                                                       | 0       |
|                                           | писчий мел<br>и наннофос-<br>силиевый<br>форамини-<br>форамини-                                  |                      |                                                      |               | Верхний кампан<br>Верхний турон—<br>коньяк<br>Турон                     | 21540 - 26-1-<br>26130 - 30CC                                        | 30<br>; |
| ſ                                         | реровыи<br>писчий мел                                                                            |                      |                                                      |               | Верхний<br>Средний<br>Нижний                                            | 31-1-32-CC<br>32-CC-34-3-50<br>34-3-50-39-CC                         |         |
|                                           |                                                                                                  |                      |                                                      |               | Среднии-верхнии<br>Сеноман<br>Нижний<br>Верхний                         | 44-1 - 48-1-40<br>48-1 - 40-51-CC                                    | ;       |
|                                           | Пестроцветные<br>известняки                                                                      | 52–67                | 452-0-587,7                                          | 135,7         | Альб<br>Средний<br>Верхний апт—<br>нижний альб                          | 52-00 - 52-1<br>53-1 - 55-1-20<br>55-1 - 20-57-CC<br>57-CC - 59-CC   | •       |
| III 7<br>Y                                | Гуфогенные и<br>углеродсодержа-                                                                  | 67–71                | 587;7—632,5                                          | 44,8          | Нижний апт                                                              | 60-1 - 65-1<br>65-2 - 66-CC<br>67-00 - 71                            |         |
|                                           | цие известняки<br>Перемежающиеся<br>гонкие пелаги-<br>неские и клас-<br>гические из-<br>зестняки | a 72—92              | 632,5-822,5                                          | 1900          | Верхний баррем                                                          | 72 - 78-1<br>78-1 - 92-1                                             |         |
| Приме<br>(мг·см <sup>-</sup>              | ачание:1 — ср<br><sup>з</sup> ·10 <sup>-з</sup> ·год <sup>-1</sup> ).                            | еднее со             | держание (вес.                                       | %);2 – cpe    | дняя скорость аккум                                                     | уляции                                                               |         |

<sup>2</sup>Определения природно-влажных образцов [Initial Reports...,1981].

<sup>22</sup> По данным Дж. Харденбола и В. Берггрена (1978 г.)[Initial Reports..., 1981] и Дж. ван Хинта [Hinte, 1976].

\*3 В весовых единицах — в пересчете на воздушно-сухой материал (с учетом природной влажности) [Initial Reports..., 1981].

(мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>) использовались бортовые определения общей природной (влажной) плотности (объемного веса) и собственно влажности осадка, а также средние значения содержания компонентов (в пересчете на воздушно-сухую навеску) для определенного геохронологического интервала (см. табл. 7).

Ср'єдние линейные скорости седиментации (см. табл. 7; рис. 6) 24

|                       |       | Физиче                          | СКИВ                               | Геохроноло-                                    | Скорость с                               | едиментации*3                                               |
|-----------------------|-------|---------------------------------|------------------------------------|------------------------------------------------|------------------------------------------|-------------------------------------------------------------|
| Интервал<br>глубин, м | м     | плотность,<br>г/см <sup>3</sup> | гры <sup>а</sup><br>влажность<br>% | должитель-<br>ность,<br>млн. лет <sup>+2</sup> | м · 10 <sup>-6 ·</sup> год <sup>-1</sup> | мг · см <sup>-2</sup> · 10 <sup>-3</sup> · год <sup>1</sup> |
| <br>0-4.5             | 4,5   | 1,61                            | 37,52                              | 1.8                                            | 2.5                                      | 310                                                         |
| 4,5-13,0              | 8,5   | 1,61                            | 37,52                              | 1,0                                            | 8,5                                      | 1050                                                        |
| 13.0-17.6             | 4.6   | 1.61                            | 37.52                              | 2.0                                            | 2.3                                      | 280                                                         |
| 17.6-34.0             | 16.4  | 1.61                            | 37.52                              | 5.3                                            | 3.1                                      | 380                                                         |
| 34.0-43.2             | 9.2   | 1.61                            | 34.85                              | 8.0                                            | 1.2                                      | 150                                                         |
| 43,6-46,8             | 3,6   | 1,61                            | 32,87                              | 4,5                                            | 0,8                                      | 100                                                         |
| 46,8182,9             | 136,1 | 1,78<br>(керн <1)<br>1.86       | 32,10<br>7)                        | 5,0                                            | 27,2                                     | 4185                                                        |
|                       |       | (керн 17)                       |                                    |                                                |                                          |                                                             |
| 182,9-214,8           | 31,9  | 1,86                            | 28,25                              | 4,0                                            | 4,64                                     | 750                                                         |
| 214,8–262,0           | 47,2  | 1,86                            | 27,80                              | 4,0                                            | 6,4                                      | 980                                                         |
| 262,0-281,0           | 19,0  | 1,89                            | 24,95                              | 2,0                                            | 9,5                                      | 1560                                                        |
| 281,0-294,0           | 13,0  | 1,89                            | 29,37                              | 2,0                                            | 6,5                                      | 1040                                                        |
| 294,0-347,5           | 53,5  | 1,89                            | 28,17                              | 2,0                                            | 26,7                                     | 4310                                                        |
| 347,5-385,5           | 38,0  | 1,93                            | 28,17 (?)                          | 3,0                                            | 12,7                                     | 2090                                                        |
| 385,5-423,9           | 38,4  | 1,93                            | 28,17 (?)                          | 2,5                                            | 15,4                                     | 2540                                                        |
| 423,9-452,0           | 28,1  | 1,93                            | 23,85                              | , ,                                            |                                          |                                                             |
| 452,0-461,5           | 9,5   | 2,15                            | 23,85 (?)                          | 4,0                                            | 9,5                                      | 1820                                                        |
| 461,5-480,7           | 19,2  | 2,15                            | 16,98                              | 2,0                                            | 9,6                                      | 1900                                                        |
| 480,7487,7            | 7,0   | 2,15                            | 12,80                              |                                                |                                          |                                                             |
| 487.7-528.0           | 40.3  | 215                             | 8.18                               | 6,0                                            | 14,5                                     | 3260                                                        |
| 528.0-567.5           | 39.5  | 2.36                            | 10.17                              |                                                |                                          |                                                             |
| 567.5-587.7           | 20.2  | 2.36                            | 11.29                              |                                                |                                          |                                                             |
| 587 7_632 5           | 44.8  | 2 18                            | 13.81                              |                                                |                                          |                                                             |
| 337,7-032,9           | ,0    | 2,10                            | 10,01                              | 3,0                                            | 43,8                                     | 9590                                                        |
| 622 5-600 0           | 66 F  | 2 35                            | 12.00                              |                                                |                                          |                                                             |
| 699 0-822 5           | 123.5 | 2,35                            | 7.33                               | 3.0                                            | 41.17                                    | 9370                                                        |
|                       |       | _,                              | • /==                              |                                                |                                          |                                                             |

анализировались с учетом литологических особенностей и фациальной природы осадков, а также того факта, что разрез скв. 463 слагается в целом карбонатными отложениями, накопление которых происходило выше уровня карбонатной компенсации. Выделяются три группы величин скоростей (мм · 10<sup>-3</sup> · год<sup>-1</sup>): максимальные (> 40), средний (10– 40) и низкие (< 10).

| Стратиграфическое                 |                       |                       | SiO   | 1         | Al <sub>2</sub> | <b>),</b>        |  |
|-----------------------------------|-----------------------|-----------------------|-------|-----------|-----------------|------------------|--|
| подразделение                     | Керны                 | интервал<br>глубин, м | 1     | 2         | 1               | 2                |  |
| Плейстоцен                        | 1–1 – 1–3             | 0-4,5                 | 9,19  | 28,5      | 2,93            | 9,1              |  |
| Верхний                           | 1-4 - 2-5             | 4,5-13,0              | _     | -         | -               | -                |  |
| Плиоцен                           |                       |                       |       |           |                 |                  |  |
| Нижний                            | 2-6 - 3-1-110         | 13,0-17,6             | 2,16  | 6,0       | 0,70            | 2,0              |  |
| Верхний миоцен                    | 3-2-110 - 4-CC        | 17,6-34,0             | 2,46  | 9,3       | 1,02            | 3,9              |  |
| Верхний олигоцен                  | 5-1-0 - 6-6-20        | 34,0-43,2             | 0,30  | 0,5       | 0,09            | 0,1              |  |
| Нижний-средний<br>эоцен           | 6-6-20-7-2-30         | 43,2—46,8             | 0,32  | 0,3       | Нет             | -                |  |
| Нижний маастрихт                  | 7-2-30 - 21-5<br>-40  | 46,8—182,9            | 10,95 | 458,0     | 0,40            | 16,7             |  |
| Верхний кампан                    | 21-5-40 - 26-1<br>-30 | 182,9–214,8           | 4,15  | 31,1      | 0,12            | 0,9              |  |
| Верхний турон-<br>коньяк<br>Таран | 26-1-30-30-CC         | 214,8–262,0           | 0,18  | 1,8       | Нет             | -                |  |
| Турон<br>Веруний                  | 21_1_32_00            | 262 0-291 0           | _     | _         | _               | _                |  |
| Сорлний                           | 31 - 1 - 32 - 00      | 202,0-201,0           | 6 50  | -<br>67.6 | 0.42            | 44               |  |
| Средний                           | 32 - 00 - 34 - 3 - 50 | 201,0-23475           | 3.02  | 130.2     | 0.43            | 185              |  |
| Пижний                            | 34 - 3 - 50 - 39 - 00 | 294,0-347,5           | 0.28  | 5.8       | 0,40<br>Нат     | 0                |  |
| Средния-верхния                   | 40-1-43-00            | 347,0-303,0           | 0,20  | 5,0       | 1101            | v                |  |
| Сепомал                           | 44-1-48-1-40          | 385 5-423 9           | _     | _         | _               | _                |  |
| Верхний                           | 48-1-40 - 51-CC       | 423 9-452 0           | _     | _         | -               | -                |  |
| Альб                              | 52-00 - 52-1          | 452.0-461.5           | 24.73 | 450.1     | 1.03            | 18.7             |  |
| Средний                           | 53-1 - 55-1-20        | 461.5-480.7           | 27.96 | 531.2     | 0.27            | 5.1              |  |
| Верхний апт-                      | 55-1-20 - 57-CC       | 480,7-487,7           |       |           |                 |                  |  |
| нижний альб                       |                       |                       |       |           |                 |                  |  |
|                                   | 57-CC - 59-CC         | 487,7-528,0           |       |           |                 |                  |  |
|                                   | 60-1 - 65-1           | 528,0-567,5           | 18,31 | 596,9     | 2,39            | 77, <del>9</del> |  |
| Нижний апт                        | 65-2 - 66-CC          | 567,5-587,7           | 18,10 | 1735,8    | 1,05            | 100,7            |  |
|                                   | 6700 - 71             | 587,7-632,5           | 42,47 | 4072,9    | 1,56            | 149,6            |  |
|                                   | 72 - 78-1             | 632.5-699.0           | 33,37 | 3200,2    | 1.34            | 128.5            |  |
| Верхний баррем                    | 78—1 — 92—1           | 699,0-822,5           | 28,06 | 2629,2    | 1,23            | 115,2            |  |

#### Таблица 7 (окончание)

Максимальные скорости седиментации наблюдаются в геохронологическом интервале поздний баррем — ранний апт. Важно отметить, что отложения, отвечающие этому интервалу, представлены известняками, существенно обогащенными вулканокластическим материалом, обломочными продуктами разрушения сравнительно мелководных рифогенных, биогермных образований. Накопление этих осадков происходило в относительно неглубоком бассейне, для которого во второй половине раннего апта отмечаются явления стагнации — аккумуляция туфогенных карбонатных осадков, обогащенных сапропелевым материалом, растительным детритом, и сероцветных известковых отложений. Определенные для этих отложений минимальные скорости седиментации от 41,2 до 44,0 мм · 10<sup>-3</sup> · год<sup>-1</sup> известны для ряда районов современных бассейнов Тихого океана, в которых имеются рифовые, вулканические постройки и поверхность дна характеризуется относительно рассеченным рельефом [Безруков, Романкевич, 1970; Лисицын, 1974, 1978].

Низкие скорости седиментации в целом отмечаются для кайнозойских отложений и для осадков позднего кампана, среднего турона—коньяка, среднего—позднего сеномана, среднего—позднего альба. Учитывая относительно высокое положение уровня карбонатной компенсации и существенную эрозионную роль придонных течений в это время, в частности в раннем зоцене и раннем олигоцене, а также накопление осадков ниже уровня лизоклина, можно тем не менее считать, что в кайнозое (достоверно — с позднего миоцена) накопление осадков проходило в северной олиготрофной зоне Тихого океана, характери-

| CaCO3     |            | Fe   |       | Mn   |            |      | Р                                        | C <sub>opr</sub> |              |  |
|-----------|------------|------|-------|------|------------|------|------------------------------------------|------------------|--------------|--|
| <br>1     | 2          | 1    | 2     | 1    | 2          | 1    | 2                                        | 1                | 2            |  |
| <br>      | 249.2      |      | 32    | 0.06 | 0.2        | 0.05 | $0.0016 \cdot 10^2$                      | Нет              | 0            |  |
| -         | 240,2<br>— | -    | _     | _    | _          | _    | _                                        | _                | -            |  |
|           |            |      |       | 0.04 | 0.1        | 0.05 | 0.0014 . 102                             | Hat              | •            |  |
| 93,64     | 262,2      | 0,48 | 1,3   | 0,04 | 0,1        | 0,05 | 0,0014 · 10=                             | "                | 0            |  |
| 89,62     | 340,6      | 0,39 | 1,5   | 0,05 | 0,19       | 0,07 | 0,0027 • 10-                             | "                | 0            |  |
| 96,44     | 144,7      | 0,22 | 0,3   | 0,03 | 0,05       | 0,03 | 0,0005 • 10*                             |                  | 0            |  |
| 97,24     | 97,2       | 0,12 | 0,1   | 0,09 | 0,09       | 0,04 | 0,0004 · 10*                             |                  | 0            |  |
| 84,62     | 3541,3     | 0,31 | 42,47 | 0,02 | 0,8        | 0,02 | 0,008 · 10 <sup>2</sup>                  | "                | 0            |  |
| 89,65     | 672,4      | 0,38 | 2,9   | 0,01 | 0,08       | 0,03 | 0,0023 · 10 <sup>2</sup>                 | ••               | 0            |  |
| 91,02     | 892,0      | 0,41 | 4,0   | 0,03 | 0,29       | 0,03 | 0,0029 · 10 <sup>2</sup>                 | 0,10             | 0,98         |  |
|           |            |      |       | _    | <u>_</u> : |      | <u> </u>                                 |                  | _            |  |
| -         | -          |      | -     | 0.03 | 0.31       | 0.02 | 0.0021 . 102                             | Нет              | ň            |  |
| 87,40     | 909,0      | 0,05 | 0,8   | 0,00 | 1 72       | 0.03 | $0,0021 10^{2}$<br>$0.0129 \cdot 10^{2}$ | "                | õ            |  |
| 93,14     | 1917.0     | 0,38 | 10,3  | 0,04 | 0,63       | 0,02 | 0,0042 · 10 <sup>2</sup>                 | ••               | ŏ            |  |
| • • • • • |            | -,   |       |      |            |      |                                          |                  |              |  |
| -         | -          | -    | -     | -    | -          | -    |                                          | -                | _            |  |
|           | -          | -    | -     |      | -          |      | -                                        | -                | -            |  |
| 69,71     | 1268,0     | 0,50 | 9,1   | 0,03 | 0,55       | 0,04 | 0,0073 · 10 <sup>2</sup>                 | Нет              | 0            |  |
| 64,82     | 1231,6     | 1,48 | 28,1  | 0,05 | 0,95       | 0,04 | 0,008 · 10 <sup>2</sup>                  | **               | 0            |  |
| 69.51     | 2266.0     | 1.09 | 35.5  | 0.02 | 0.65       | 0.03 | 0.010 · 10 <sup>2</sup>                  | "                | 0            |  |
| 74.23     | 7119.0     | 0.68 | 65.2  | 0.05 | 4.8        | 0.02 | $0.010 \cdot 10^{2}$                     | "                | õ            |  |
| 39.60     | 37.97 0    | 1.01 | 96.8  | 0.08 | 7,7        | 0.02 | 0.019 · 10 <sup>2</sup>                  | 0.53 (1.35)      | 50 8 (120 5) |  |
| 49.00     | 4699 0     | 0.68 | 65.2  | 0.06 | 5.8        | 0.03 | $0.029 \cdot 10^{2}$                     | Нет              | 00,0 (129,0) |  |
| 66,49     | 6230,1     | 0,55 | 51,5  | 0,02 | 1,9        | 0,02 | 0,019 · 10 <sup>2</sup>                  | "                | ŏ            |  |

зующейся относительно невысокой биологической продуктивностью, при глубинах лизоклина и карбонатной компенсации, близких к современным.

Средние, промежуточные значения скоростей седиментации характерны для интервала от позднего апта до раннего альба и от раннего сеномана до раннего турона. Можно полагать, что развитие рассматриваемого региона в этот период имело переходный характер и выражалось в общем процессе опускания океанского ложа, возрастания глубоководности бассейна.

Скорость накопления компонентов (см. табл. 7; рис. 6) рассмотрим начиная с СаСО<sub>3</sub>, который является главным составляющим осадков. Его распределение в целом пропорционально средним скоростям седиментации. Однако для интерпретации темпов аккумуляции СаСО3 важно учитывать фациально-генетическую природу осадка. В отложениях раннего баррема-раннего апта высокие скорости (6230-7119 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>) накопления СаСО<sub>3</sub> обусловлены не столько биологической продуктивностью бассейна, сколько явлениями переотложения (подводного оползания, обрушения и т.п.) относительно мелководных карбонатных осадков, кластических продуктов разрушения рифогенных, биогермных образований. Осадки раннего маастрихта в отличие от нижнемеловых отложений представляют собой префораминифер и наннопланктона, имущественно известковые накопления скелетов осаждавшихся в экваториальной зоне высокой биологической продуктивности выше уровня карбонатной компенсации того времени [Andel, Moore, 1974; Andel et al., 1975, 1976].

| A                      |                    | r               | <u> </u>                                | · -             |             |
|------------------------|--------------------|-----------------|-----------------------------------------|-----------------|-------------|
| стратиграфичес-<br>кое | - E.               |                 |                                         |                 | <b>K</b> -0 |
| подразделение          |                    | Min             | l                                       | mgo             | <b>*</b> 20 |
| <b>A</b>               | 5,0 15,0           | 1,0 2,0 3,0 4,0 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 10,0 30,0       | 40 120      |
| Плецстоцен             | <u> 8888</u>       | RXXXX           |                                         |                 |             |
| верхний плиоцен        | 0                  | U U             | Q.,                                     | <u> </u>        | Ø           |
| Пижний плиоцен         | 0,0                |                 | 3,23                                    |                 |             |
| верхний миацен         | B3                 | <u>8888</u>     | 777777                                  |                 |             |
| Средний мирцен         |                    |                 |                                         |                 |             |
| Нитний миоцен          |                    |                 |                                         |                 |             |
| Верхний олигоцен       |                    | 888             |                                         |                 |             |
| Нитний олигоцен        |                    |                 |                                         |                 |             |
| Верхний зоцен          | ]                  |                 |                                         |                 |             |
| Средний зацен          |                    |                 |                                         |                 |             |
| Нижний зоцен           |                    |                 | 77:"                                    | 0,0             |             |
| Верхний палеоцен       |                    |                 |                                         |                 |             |
| Нимний палеоцен        | 1                  |                 |                                         |                 |             |
| Маастрихт              |                    | 88              | $\overline{\langle } \rangle$           |                 |             |
| Верхний кампан         |                    | 8               | $\mathbb{N}$                            |                 |             |
| Нижний кампан          |                    |                 | 3-3-5                                   | ••••••          | *******     |
| верхний сантон         | 1                  |                 |                                         |                 |             |
| Нимний сантон          | 1                  |                 |                                         |                 |             |
| Верхний коньяк         |                    | 88              | 11/1/2-                                 |                 |             |
| Нижний коньяк          |                    |                 |                                         |                 |             |
| верхний турон          | 688                | 88              |                                         | 4               |             |
| Средний туран          | 0                  | $\bigcirc$      | 0                                       | $\bigcirc$      | 0           |
| Нижний турон           | 881                | 8889            |                                         |                 |             |
| Верхний сеноман        |                    | 88 · · · · ·    | N T                                     | 6 (1)           | XI          |
| Средний сеноман        |                    | 88              |                                         |                 | × 1         |
| Нижний сеноман         | 0                  | 0               | 0                                       | 0               | 0           |
| Верхний альб           | 888                | XXX             | VIIII                                   |                 |             |
| Средний альб           | 34,0353            | 0,0             |                                         | 1.1.1           |             |
| Нижний альб            | 888                |                 |                                         | State And State |             |
| Верхний апт            |                    |                 |                                         |                 |             |
| HUMHUU ANM             | 8883               |                 |                                         |                 | 22 8        |
| Hummul anm             | <b>888</b> 83      |                 | //4                                     |                 |             |
| Нижний апт (КЛАС-      | 18888 <sup>-</sup> |                 | $\mathcal{N}$                           |                 |             |
| Вертний баррем         |                    |                 |                                         |                 |             |
|                        |                    |                 |                                         |                 |             |

Рис. 5. Распределение средних содержаний (вес.% в пересчете на БТККВ) Fe, Mn, P, MgO и K<sub>2</sub>O в разрезе постюрских отложений скв. 463

Для SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe и Mn характерно накопление максимальных количеств в течение позднего баррема—раннего апта, что связано с выраженным проявлением вулканических процессов. Компоненты поступали в осадок главным образом в форме мафического алюмосиликатного вулканокластического материала и в меньшей мере — в виде гидротермальных эксгаляций.

Роль индикаторного компонента для оценки интенсивности снабжения из эксгаляционных источников может принадлежать Мл. Скорость накопления Мл в современных пелагических осадках океана составляет от 0,2–3,2 до 4,0 мг  $\cdot$  см<sup>-2</sup>  $\cdot$  10<sup>-3</sup>  $\cdot$  год<sup>-1</sup> [Bender et al., 1970; Riley, Chester, 1971]. В осадках Восточно-Тихоокеанского поднятия скорость накопления Мл достигает 24–35 мг  $\cdot$  см<sup>-2</sup>  $\cdot$  10<sup>-3</sup>  $\cdot$  год<sup>-1</sup> [Bonder et al., 1971; Lyle, 1976]. В течение раннемелового этапа (ранний баррем – ранний апт) темпы аккумуляции Мл превышали 1,9 мг  $\cdot$  см<sup>-2</sup>  $\cdot$  10<sup>-3</sup>  $\cdot$  год<sup>-1</sup>. Интервалы наиболее высоких скоростей отмечаются в туфогенных известняковых осадках нижнего апта, обогащенных органическим детритом: 8,1 мг  $\cdot$  см<sup>-2</sup>  $\cdot$  10<sup>-3</sup>  $\cdot$  год<sup>-1</sup>. Для этих же геохронологических интервалов наблюдаются весьма высокие скорости аккумуляции Fe – 65,2–96,8 мг  $\cdot$  см<sup>-2</sup>  $\cdot$  10<sup>-3</sup>  $\cdot$  год<sup>-1</sup>. Для осадков Восточно-Тихоокеанского поднятия [Boström, 1973; Bender et al., 1971] этот показатель составляет 63–110.

Формы компонентов были рассмотрены в предыдущем разделе. Помимо гидроокислов и силикатных форм нахождения тяжелых металлов, определенная роль принадлежит органическому веществу, концентрирующему из морской воды металлы гидротермального происхождения.

Оценивая величины скоростей аккумуляции, необходимо учитывать значительную разбавляющую роль карбонатных компонентов (см. рис. 5, распределение концентраций Fe, Mn в пересчете на БТККВ). Вместе с тем рассчитанные средние скорости акку-

|                                    | Скоро<br>Свдимен | CMB<br>Mayuu |           |                  |             |             |         |                |
|------------------------------------|------------------|--------------|-----------|------------------|-------------|-------------|---------|----------------|
| падразделение                      | Ι                | I            | CHC03     | sio <sub>2</sub> | AI203       | Fe          | Mn      | Р              |
|                                    | 10 20 30 40      | 1000 3000    | 2000 0000 | 500 1500         | 20 40 60 80 | 10 20 30 40 | 1 2 3 4 | 0,20,40,60,8   |
| Плейстоцен                         | 1                |              |           | 1-1-1-1-1-1      | 1           |             |         | N              |
| верхний плиоцен                    |                  | <b>**</b>    |           | 0                | 0           | 0           | 0       | 0              |
| Нижний плиоцен                     | 1                | 8            | 1         | 1                | 1           |             |         | N              |
| верхний миоцен                     |                  | 8            |           | 1                | Ι           |             | :       |                |
| Средний миоцен                     |                  | T            |           |                  | 1           |             |         |                |
| Нитний миоцен                      |                  | · · ·        |           |                  |             |             |         | 1              |
| Верхний олигоцен                   | 6                | E            |           |                  |             |             |         |                |
| Нижний олигоцен                    | ]                |              |           |                  |             |             |         |                |
| Верхний зацен                      | 1                |              |           |                  |             |             |         |                |
| Средний зоцен                      | R                | 2            |           |                  |             |             |         | 1              |
| Нижний зоцен                       |                  |              |           | 0,3              |             |             |         | 1              |
| верхний палеоцен                   |                  |              |           |                  | 1           |             |         |                |
| Нижний палеоцен                    | 1                |              |           |                  |             |             |         | ]              |
| Maacmpuxm                          |                  |              |           | ŕ                | 1           |             | 8       |                |
| Верхний кампан                     | <u>کا</u>        | <del>2</del> |           | 31,1             | 0,9         |             | 0,08    | N              |
| Humnud kamnan                      |                  |              |           | 1                | 1           | [           | I       | I              |
| Верхний сантон                     | ]                |              |           |                  |             |             |         |                |
| Нижний сантон                      | 1                |              |           |                  |             |             |         |                |
| Верхний коньяк                     |                  | 畿            |           | 1,8              | 0,0         |             | 8       |                |
| Нижний коньяк                      |                  | 凝            |           | 1,8              | Q0          |             |         | Ν              |
| верхний турон                      |                  | 鰦            |           | 1,6              | <b>Q</b> 0  |             |         | N              |
| Сревний турон                      |                  | <b>H</b>     |           | 67,6             | 4,4         | MM          |         |                |
| Нижний турон                       |                  |              |           |                  | 8           | W           | 83      | 1,29           |
| Верхний сеноман                    |                  |              |           | 5,8              | 0,0         | WW          |         | $\sim$         |
| Средний сеноман                    |                  |              |           | 5,8              | 0           | XX          |         | $\sim$         |
| Нижний сеноман                     |                  |              |           |                  |             |             |         |                |
| верхний альб                       |                  |              |           | 1                | 8           | W           |         | V///A          |
| Средний альб                       |                  |              |           |                  | 5,1         |             |         | $\sqrt{1/1}$   |
| Нижний альб                        |                  |              |           |                  |             |             |         | <u>ALL'IL</u>  |
| верхний апт                        |                  |              |           |                  |             |             |         | $\overline{U}$ |
| Мижний апт<br>(известняки)         |                  |              |           |                  | 100,7       | 66,2        |         | 1.9            |
| Нижний апт (туфовые<br>Чэвестняки) |                  | 9590         |           | 4072             | 149,6       | 96_8        | 7,7     | 1, 9, 1        |
| Нимний алт (кластические           |                  |              |           | //////3200/////  | 128.5       | 88 6 2 88   | 5,8     | 2,9            |
| Верхний варрем                     |                  | 5370         |           | 2629.2           | ill52       | 51,5        |         | 1,90           |

Рис. 6. Респределение средних скоростей седиментации (I — мм·см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>; II — мг·см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>) и эккумуляции компонентов (мг·см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>) СаСО<sub>3</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и P в разрезе постюрских отложений скв. 463 муляции компонентов для рассматриваемых осадков можно обсуждать и в аспекте абсолютных масс, характеризующих в целом высокие темпы седиментации в начальные этапы развития протоокеанского рифтогенного бассейна. Иной характер носят сравнительно большие скорости аккумуляции рассматриваемых компонентов в раннем маастрихте. При относительно низких концентрациях SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn: и других компонентов они обусловлены весьма высокими темпами седиментации фораминиферово-наннофоссилиевых илов в экваториальной зоне высокой биологической продуктивности (см. рис. 4—6).

Двойственную природу имеют высокие скорости аккумуляции фосфора: в позднем барреме — среднем альбе они связаны с проявлениями вулканической активности (см. формы фосфатов на рис. 3); в позднем мелу, особенно в раннем маастрихте, весьма большие скорости накопления фосфора являются следствием нахождения данного района в экваториальной зоне высокой биологической продуктивности.

#### ГЕОХИМИЧЕСКАЯ ИСТОРИЯ СЕДИМЕНТАЦИИ

"Геохимия есть история атомов в нашем планетном теле", — неоднократно подчеркивал В.И.Вернадский [1960, с. 272], ссылаясь на идеи М.Фарадея и Х.Шёнбейна, сформулированные ими в 30-40-х годах прошлого века. Это положение особенно существенно для познания геохимической эволюции седиментации Мирового океана в мезозое и кайнозое. В многочисленных работах по эволюции океанской седиментации в мезозое и кайнозое (см. обобщающие сводки [Andel, Moore, 1974; Andel et al., 1975, 1976; Berggren, Hollister, 1977; и др.]) основное внимание обращено на распределение карбонатных и кремнистых компонентов осадка и факторов, контролирующих их аккумуляцию: изменение глубины карбонатной компенсации, лизоклина, величин градиентов растворения, относительного положения зон биологической продуктивности, конфигурации палеотечений, тектонических движений структур океанского ложа и др. Эти работы позволили вскрыть основные черты эволюции осадкообразования. Однако в сочетании с главными компонентами особенности распределения тяжелых металлов и рассеянных элементов, форм их нахождения в осадках можно интерпретировать как информацию, в которой зарегистрированы важнейшие события геохимической истории седименташии.

Анализ изученного материала позволяет подразделить геохимическую историю седиментации в западной части подводных гор Маркус-Неккер на три главных этапа, в пределах которых выделяются фазы и интервалы.

Раннемеловой этап: поздний баррем—средний альб (104—118 млн. лет). Он характеризуется накоплением относительно неглубоководных карбонатных отложений, существенно обогащенных Mn, Fe, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и ассоциирующими с ними тяжелыми металлами, поступавшими в форме основной вулканокластики и гидротермальных эксгаляций (см. табл. 1—7, рис. 2—6). В течение раннемелового этапа, характеризовавшегося прогрессивным погружением океанического ложа и углублением бассейна, выделяется ряд фаз и интервалов, отличавшихся выраженной геохимической спецификой.

Фаза: поздний баррем—ранний апт. И н т е р в а л: поздний баррем, в течение которого накапливались отложения, представленные перемежающимися кластическими известняками, имеющими нередко турбидитную природу, и тонкозернистыми карбонатными осадками. Количество и размер карбонатных обломков сокращаются в направлении к кровле отложений интервала. Важно подчеркнуть, что известняковые обломки представлены мелкозернистыми известняками, фрагментами оолитов, крупных раковин пелиципод, кораллов, строматолитов, водорослей, частицами базальта, редко кварца. Основная масса обломочных и тонкозернистых известняков представлена глубоко перекристализованным нанномикритом, содержащим переменные количества остатков радиолярий (до 50%), частиц основного стекла (до 20%), глинистых продуктов (иллит-смектит) изменения вулканокластики. Наличие в обломочных осадках основания разреза переотложенных верхнеюрских радиолярий [Initial reports..., 1981] позволяет приближенно оценить нижний возраст разушавшихся осадочных пород. Обращает на себя внимание высокая скорость аккумуляции этих осадков: 41,16 мм · 10<sup>-3</sup> × ×год<sup>-1</sup> или 9370 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup> (см. табл. 7, рис. 6). Подобные величины известны для начальных стадий развития протоокеанских бассейнов [Tiercelin, Faure, 1978]. Накопление этих осадков происходило в обстановке относительно мелководного бассейна с разрушающимися коралловыми рифовыми, биогермными, островными постройками, заметной эксплозивно-гидротермальной вулканической деятельности. Эти особенности формирования осадков четко отражены в главных чертах их химического состава (см. рис. 2–5). Наиболее показательны данные химического анализа в пересчете на БТККВ (см. рис. 3, 5), свидетельствующие, что наибольшая часть тяжелых металлов в исследуемых осадках присутствует в форме основной вулканокластики и иллит-смектитовых продуктов их изменения (см. рис. 3, ассоциации IB (--) и IIIA (+)): Данные о формах нахождения Al<sub>2</sub>O<sub>3</sub> и P, а также тяжелых металлов позволяют считать, что высокие скорости аккумуляции этих компонентов связаны с их массированным поступлением в протоокеанский бассейн главным образом в виде основного вулканокластического кого материала.

И н т е р в а л: р а н н и й а п т (р а н н я я ч а с т ь), в течение которого накапливались осадки, во многом близкие к позднебарремским: перемежающиеся обломочные и тонкозернистые карбонатные разности. В целом для рассматриваемого интервала наблюдается прогрессивное возрастание тонкозернистых известковых отложений к кровле разреза. Основная масса осадков сложена фораминиферово-нанномикритовым материалом с заметным количеством радиолярий (до 30%), остатков кремневых спикул губок, частиц основного стекла, зеленовато-оливкового (до бурого) гиалопелита (до 20%).

По геохимическим характеристикам эти осадки в целом близки к позднебарремским. Однако некоторое возрастание степени глубоководности отложений, относительное увеличение количеств основного вулканокластического материала нашло в них свое отражение: наблюдаются относительно возросшие концентрации Mn, Fe, тяжелых металлов (см. рис. 4, 5), соответствующее увеличение скоростей аккумуляции этих компонентов (см. рис. 6). Например, средние скорости аккумуляции Mn и Fe, составляющие соответственно 5,8 и 65,2 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>, позволяют допускать привнос определенной части тяжелых металлов из гидротермальных источников [Boström, 1973; Bender et al., 1971].

Фаза: ранний апт (средняя часть). В течение этого времени накапливались карбонатные осадки, обогащенные туфогенным материалом основного состава и органическим сапропелевидным веществом, образующим скопления в отдельных прослоях (Солг до 5%). Наличие заметных количеств вулканокластического материала и органического вешества обусловили в целом сероцветную окраску осадков. Основная масса (60-70%) таких осадков представлена биокластическим микритом (в глубоко перекристаллизованных породах — средне-крупнозернистым кальцитом) с существенной примесью тонкого гиалопелитового материала, преобразованного в смектит-иллитовые компоненты (до 50%) и цеолиты, рассеянного углефицированного органического вещества, содержащего обрывки растительных тканей (до 2-5%). Глубокая постседиментационная перекристаллизация карбонатного микрита сопровождается частичным растворением вулканического материала и формированием розетковидных выделений сидерита-анкеритаферромагнезита. В основной массе наблюдаются рассеянные выделения пирита. В целом характерной особенностью карбонатных осадков этого времени является относительно возросшее (до 30-40%) по сравнению с более ранними отложениями количество базальтоидной вулканокластики, в том числе осколков зеленовато-бурового стекла, и обогашенность сапропелевидным материалом.

Рассматриваемые отложения отличаются относительно высокими концентрациями Mn, Fe и ассоциирующих тяжелых металлов (см. рис. 4, 5). Данные факторного анализа, подтверждаемые минералогическими методами, позволяют считать, что эти металлы присутствуют совместно с органическим веществом в смектит-иллитовых продуктах изменения базальтоидной вулканокластики и в форме металлоорганических соединений (см. рис. 2, ассоциации IA (+) и IIIB (--)), а также в виде собственно смектит-иллитовых фаз (ассоциация IIA (+), см. рис. 2).

Обращает на себя внимание, что в течение этого времени скорости аккумуляции SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и ассоциирующих тяжелых металлов характеризовались максимальными для мезозоя и кайнозоя значениями (см. табл. 7, рис. 6). Это особенно примечательно для Fe и Mn (соответственно 96,8 и 7,7 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>), скорости аккумуляции которых позволяют допускать по крайней мере частичный привнос гидротермального материала в бассейн седиментации. Скорости аккумуляции Fe и Mn для осадков Восточно-Тихоокеанского поднятия соответственно составляют 63—110 и 24— 35 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup> [Boström, 1973; Bender et al., 1971], тогда как для осадков открытого океана они не превышают соответственно 2,4—9,0 и 0,4—4,0 [Mac Arthur, Elderfield, 1977]. Однако, интерпретируя величины скоростей аккумуляции компонентов, важно иметь в виду, что в течение раннего апта для района западной части гор Маркус-Неккер в целом характерны самые высокие в мезозое и кайнозое скорости седиментации: 9590 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup> (см. рис. 6, табл. 7).

Имеющаяся информация по геохимии, минералогии и литологии этих осадков позволяет считать, что их аккумуляция происходила в некотором, относительно неглубоководном стагнированном бассейне или впадине с затрудненным водообменом и выраженным дефицитом кислорода. В таком бассейне высокими темпами накапливались наннопланктонные карбонатные илы, нередко с фрагментами раковин моллюсков, обогащенные сапропелевым органическим веществом, растительным детритом и вулканокластическим базальтоидным материалом, гиалоалевритом, гиалопелитом. Преобладают продукты наземного, островного вулканизма, в несколько меньших количествах присутствует материал гидротермальных эксгаляций, переработанный в ходе постседиментационных преобразований в сульфидные, карбонатные соединения. Наблюдения в осадках следов илоедов, признаков биотурбации позволяют предполагать в некоторых интервалах наличие бентосной жизнедеятельности. Однако высокие количества накапливавшегося органического вещества при затрудненном, стагнированном гидрологическом режиме надонных вод обусловили существование в осадке резко выраженных восстановительных условий, о которых свидетельствуют как непосредственно наблюдаемые сульфиды, карбонаты Fe, так и устанавливаемые факторным анализом группировки компонентов. Важно отметить, что подобные осадки близкого возраста вскрыты на возвышенности Шатского и во впадине Науру в Тихом океане, во многих районах Атлантического и Индийского океанов, что позволяет выделить глобальную геохимическую фазу раннемелового этапа эволюции седиментации. Однако латеральное распространение таких туфогенных осадков с высоким содержанием Сорг не было непрерывным. В Тихом океане и других бассейнах подобные стагнированные осадки сменяются по площади синхронными отложениями, фаунистические, литологические и геохимические характеристики которых указывают на обстановки с нормальным кислородным режимом [Schlanger, Jenkyns, 1976].

Фаза: ранний апт (поздняя часть) — поздний альб. В это время накапливались фораминиферово-наннопланктонные отложения с переменными количествами остатков радиолярий, представленные пестроцветной циклической толщей перемежающихся разноокрашенных разностей. Для данной части разреза в общем наблюдается направленное цветовое изменение цикличности (снизу вверх): а) темно-серые, оливковые, зеленоватые разности (ранний апт, керны 66 и 67), б) перемежающиеся зеленые, бурые, розовые и белые отложения (ранний апт—ранний альб, керны 57—65), в) чередующиеся белые, бледно-зеленые и светлые зеленовато-серые разности (ранний альб—поздний альб, керны 52—55). Можно считать, что такая выраженная направленность изменения окраски в известной мере отражает смену как состава осадков, окислительно-восстановительных условий их отложения, так и кислородного режима придонных вод.

Наличие относительно грубозернистого материала (остатков фораминифер, радиолярий, биоморфных фрагментов, обломков известняков) в основании многих циклических серий, базальных эрозионных границ свидетельствует о смене активных гидродинамических обстановок спокойными, а в ряде случаев — о турбидитной природе осадков.

Основная масса рассматриваемых отложений представлена перекристаллизованным нанномикритом (до 60–70%), остатками фераминифер (до 20%), в сероцветных разностях — с заметными количествами рассеянного органического вещества (до 1,0–1,5%), в красноцветных — гидроокислов Fe. Примесь частиц темно-зеленого, бурого базальтового стекла и глубоко измененной вулканокластики в осадках не моложе позднего апта достигает 10%. Наблюдаются обломки створок пелеципод, известковых губок, жгутиковых водорослей, остатки радиолярий, преобразованные в опал-кристобалитовый материал (5–25%). Перекристаллизация нанномикритового вещества основной массы осадков сопровождалась растворением силикатных, гидроокисных вулканогенных примесей и образованием эпигенетических выделений карбонатов Fe, Mn и Mg (см. рис. 4).

Осадки рассматриваемого времени характеризуются относительно высокими концентрациями  $Al_2O_3$ , Fe, Mn и ассоциирующих тяжелых металлов (см. рис. 2–6). Как показывают данные факторного анализа и изучения глинистых компонентов (см. рис. 2, 3), значительная часть Fe, Mn, Ni, Co, Cu, V, Cr и других металлов присутствует в форме базальтоидной вулканокластики, преобразованной в железо-магнезиальные иллит-смектитовые фазы (см. рис. 2, ассоциации IA (+), и особенно IIB (–)). При снятии карбонатного разбавления (см. рис. 3) более определенно выявляется роль гидроокислов Fe, развитых по вулканокластике (ассоциация IA (+)), собственно вулканокластики (ассоциация IIA (+)) и иллит-смектитовых продуктов (ассоциация IIIA (+)). Эти выводы хорошо согласуются и с самыми высокими для исследуемого разреза концентрациями  $K_2$  О в пересчете на БТККВ (см. рис. 5), что свидетельствует о глубокой иллитизации основной вулканокластики в это время.

В изменении скоростей седиментации в течение рассматриваемого времени обращает на себя внимание их отчетливое снижение от раннего апта к началу позднего альба (см. табл. 7, рис. 6). Особенно отчетливо уменьшаются скорости аккумуляции Al<sub>2</sub>O<sub>3</sub>, Fe и Mn, что является следствием не только уменьшения темпов седиментации, но и сокращением содержаний этих компонентов в осадках к поздним интервалам фазы, связанным в свою очередь с ослаблением вулканизма.

Однако намеченная тенденция не может распространяться на фосфор, скорости накопления которого относительно высоки и несущественно изменяются в течение рассматриваемого времени (см. рис. 6, табл. 7). Приведенные данные позволяют считать, что он имеет двойственную геохимическую природу: в бассейн седиментации этот компонент поставлялся как из вулканогенных источников (см. рис. 3, ассоциации IB (–) и IIB (–)), так и в виде биогенных продуктов, глубоко трансформированных в ходе постседиментационных изменений. Более того, при рассмотрении данных о распределении средних содержаний фосфора в пересчете на воздушно-сухую навеску и на БТККВ (см. рис. 4, 5) наблюдается их заметное возрастание от раннего апта к началу позднего альба.

Особенности литологического, минерального, химического состава осадков, их строение с определенностью позволяют сделать вывод об условиях седиментации. Осадки накапливались значительно выше уровня карбонатной компенсации того времени в обстановке относительно неглубоководного моря, которое изобиловало выравненными, существенно пенепленизированными островами, гайотами, рифовыми постройками, биогермными банками. В начальные интервалы (до начала раннего альба) в бассейн поступали ощутимые количества базальтоидной вулканокластики; формирующиеся пелагические фораминиферово-нанномикритовые илы отлагались в гидродинами чески активной обстановке (некоторые части осадочной серии носят отчетливые признаки турбидитов). С позднего апта до позднего альба имело место прогрессивное углубление бассейна, сопровождавшееся резким сокращением вулканической активности. Накопление осадков происходило в обстановке нормального кислородного режима. С этим выводом согласуются наличие окисных форм железа и соответствующая окраска осадка: преобладание бледных, розовых и зеленоватых тонов.

Таким образом, время от поздних интервалов раннего апта до начала позднего альба можно рассматривать как завершающую фазу раннемелового, начального этапа развития данной части Тихого океана. В этот период протоокеанский бассейн, испытывая прогрессивное углубление, становится частью более открытого океана.

Позднемеловой этап: поздний альб-маастрихт (65—104 млн. лет). В это время накапливались фораминиферово-нанномикритовые и наннофораминиферовые илы, сравнительно однородные, с заметным количеством кремневых остатков, преобразованных в опал-кристобалит, халцедоновые выделения. Осадки характеризуются относительно мало изменяющимися по разрезу содержаниями CaCO<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и тяжелых металлов (см. рис. 2—6, табл. 1—7).

Позднемеловой этап может быть подразделен на две фазы, разобщенные перерывом.

Фаза: поздний альб—поздний турон. Несмотря на несколько неполную геохимическую охарактеризованность осадков этой фазы, (весьма ограниченная информация по осадкам позднего турона и коньяка), можно считать, что в течение этого времени содержание главных компонентов и темпы аккумуляции существенно не менялись. Обращают на себя внимание несколько повышенные количества SiO<sub>2</sub> и Al<sub>2</sub>O<sub>3</sub> лишь в осадках нижнего альба. Это связано с затуханием вулканической деятельности, активно 3. Зак. 2150 проявлявшейся в раннем мелу. Скорости накопления Mn и Fe (см. табл. 7, рис. 6) не превышают значений, типичных для пелагических зон Мирового океана [Mac Arthur, Elderfield, 1977; Bender et al., 1970; Boström et al., 1973]. Для CaCO<sub>3</sub> наблюдается отчетливое возрастание скорости аккумуляции от позднего альба—раннего сеномана к турону (от 1268 до 4014 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>). Подобное изменение темпов накопления карбонатов может быть связано с вхождением района скв. 463 в южную краевую часть относительно широкой в то время зоны высокой биологической экваториальной продуктивности при общем направленном к северу движении Тихоокеанской плиты [Berggren, Holister, 1977]. Примечательна выраженная обедненность осадков этого времени тяжелыми металлами, присутствующими преимущественно в форме иллитовых, смектитовых компонентов (см. рис. 2, 3).

Интервал: поздний кампан — коньяк (перерыв в седиментации) отчетливо проявляется в западной части гор Маркус-Неккер; северо-восточнее, на возвышенности Хесса, его эрозионный эффект определяется особенностями развития блоковых структур.

Относительно большой геохронологический объем данного перерыва в западных частях исследуемой области по сравнению с восточными, северо-восточными районами позволяет предполагать его связь с активизацией позднемеловых аналогов пассатных течений и их северо-западных ветвей [Luyendyk et al., 1972].

Фаза: поздний кампан—маастрихт. В пределах этой фазы могут быть выделены два интервала, различающиеся по условиям седиментации и отчасти по химизму осадков.

Интервал: поздний кампан, характеризующийся сравнительно стабильными литолого-минеральным составом и геохимическими характеристиками осадков. Отмечается существенное падение скоростей аккумуляции CaCO<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe и Mn; их величины близки к тем, которые отмечались для коньяка и позднего турона, что можно связывать с повышением уровня лизоклина в это время.

И н т е р в а л: м а а с т р и х т, литологический состав осадков которого типичен для позднемелового этапа. Следует отметить некоторое возрастание содержаний SiO<sub>2</sub> и Mn, что может быть следствием высокой биологической продуктивности этого времени и вместе с тем носит характер остаточных накоплений в основании крупнейшего перерыва. Последний вывод подтверждается анализом конкретного распределения компонентов (см. рис. 2): осадки, располагающиеся в кровле отложений раннего маастрихта (базальная граница перерыва), обогащены иллит-смектитовыми компонентами. Наиболее замечательной особенностью этого времени являются весьма высокие скорости накопления CaCO<sub>3</sub>, SiO<sub>2</sub>, P, Fe, Mn и ассоциирующих тяжелых металлов (см. рис. 6, табл. 7).

Вопрос о появлении в разрезе мезозоя и кайнозоя интервалов с высокими скоростями седиментации широко обсуждается в литературе [Arrhenius, 1963, 1967; Winterer, 1973; Berger, 1973; Andel, 1974; Andel et al., 1975, 1976; Lacelot, Larson, 1975] с привлечением данных по седиментологии, палеомагнетизму, абсолютному возрасту пород фундамента, палеотектонических реконструкций. Анализ имеющегося материала позволяет считать, что в раннем маастрихте район скв. 463 находился в пределах экваториальной зоны высокой биологической продуктивности. Накопление осадков происходило в пелагических условиях существенно выше уровня лизоклина того времени. Таким образом, обсуждаемая в разных аспектах концепция о направленном на север движении Тихоокеанской плиты, фиксируемом в разрезе при ее прохождении через экваториальную зону высокой биологической продуктивности, в целом согласуется с результатами наших исследований.

Кайнозойский этап (0—65 млн. лет). Этот этап является существенно отличным от предшествующих: наблюдается резкое изменение в геохимической истории седиментации, которая после олигоцена характеризуется чертами, свойственными настоящему времени.

Фаза: маастрихт—ранний эоцен (перерыв в седиментации). Перерыв между мезозоем и кайнозоем носит по крайней мере широко региональный характер для Тихого океана. Можно полагать, что в это время район гор Маркус-Неккер, пройдя при общем движении Тихоокеанской плиты на север экваториальную зону высокой биологической продуктивности, находился в северной олиготрофной области, воды которой характеризовались значительной агрессивностью по отношению к карбонату и кремнезему, высокими скоростями эрозии [Andel et al., 1975, 1976]. фаза: ранний зоцен. В это время накапливались фораминиферово-наннопланктонные илы, практически не содержащие алюмосиликатной примеси, но характеризующиеся относительно высокими содержаниями рассеянного Mn и P (см. рис. 5). Крайне низкие скорости седиментации (см. рис. 6, табл. 7) свидетельствуют, что осадки раннего зоцена представлены остаточными образованиями, сохранившимися после эрозии (средний зоцен—ранний олигоцен). Можно считать, что повышенные количества Mn и P в этих осадках имеют реликтовую природу. Данные по изучению изотопов кислорода и восстановлению палеотемператур [Frakes, Kemp, 1972, 1973] и палеогеографические реконструкции [Berggren, Hollister, 1977] указывают, что в Тихом океане до 60° с.ш. в эоцене господствовал теплый (субтропический) гумидный климат, резко изменившийся в олигоцене.

фаза: средний зоцен—поздний олигоцен (перерыв в седиментации). Перерыв носит по меньшей мере широко региональный характер для Тихого океана и связан с резкими изменениями климата на границе зоцена и олигоцена, сопровождавшимися кардинальной перестройкой системы океанских течений [Frakes, Kemp, 1972, 1973]. Вторжение в центральную часть Тихого океана придонной антарктической воды (холодной, с высокой плотностью, соленостью, агрессивной по отношению к карбонату и силикатам) вызвало широкую эрозию, растворение осадков [Shakleton, Kennett, 1975a, b]. Причинами этих событий явилось образование широкого морского пролива между Австралией и Антарктидой и связанное с ним формирование антарктического морского льда [Berggren, Hollister, 1977].

фаза: поздний олигоцен. В это время накапливались фораминиферово-наннопланктонные илы, характеризующиеся относительно низкими содержаниями Fe, Mn и тяжелых металлов (см. рис. 2—5). Весьма низкие скорости аккумуляции осадков и рассматриваемых компонентов (см. рис. 6) позволяют считать, что в это время лизоклин находился на сравнительно небольшой глубине. Это связано с вторжением в западные районы Тихого океана глубинных антарктических вод, отличавшихся высокой эрозионной агрессивностью [Shakleton, Kennett, 1975a, b]. В отличие от западного района гор Маркус-Неккер в более восточных областях центральной части Тихого океана в позднем олигоцене отмечаются самые высокие скорости накопления карбонатов для кайнозоя [Andel et al., 1975, 1976].

Фаза: ранний—средний миоцен (перерые в седиментации). Перерыв носит широко региональный характер для Тихого океана. В это время положение уровня карбонатной компенсации отличается сравнительно небольшой глубиной. Устанавливается современная структура глубинной циркуляции. В седиментации Тихого океана ключевая роль принадлежит факторам, связанным с формированием антарктического оледенения [Shakleton, Kennett, 1975a, b; Andel et al., 1975, 1976].

Фаза: поздний миоцен – плейстоцен. Седиментационная история этого времени для центральной части Тихого океана была насыщена многочисленными, часто сменяющимися событиями. Однако в западном районе гор. Маркус-Неккер существовали относительно стабильные условия осадконакопления. Аккумулировались фораминиферовонаннопланктонные осадки, характеризующиеся относительно невысокими содержаниями Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и тяжелых металлов (см. рис. 2–6). В плейстоцене в связи с активизацией островного базальтоидного вулканизма наблюдаются несколько повышенные концентрации Fe, Mn и тяжелых металлов и соответственно возросшие скорости их аккумуляции.

\* \* \*

Итак, изучение особенностей распространения главных компонентов и тяжелых металлов, форм их нахождения в сочетании с данными по минералогии постюрских отложений гор Маркус-Неккер позволяет выделить три главных этапа геохимической истории седиментации: 1) раннемеловой, 2) позднемеловой и 3) кайнозойской.

Раннемеловой этап (поздний баррем—поздний альб) характеризуется накоплением относительно неглубоководных карбонатных осадков с заметным количеством вулканокластического базальтоидного материала. Отмечается относительно высокое содержание тяжелых металлов, присутствующих главным образом в форме вулканокластических компонентов, измененных в иллит-смектитовые фазы, в меньшей ме-
ре — в форме гидротермальных эксгалятов. Максимума вулканическая активность достигала в средней части раннего апта, когда в условиях стагнированного бассейна накапливались туфогенные карбонатные илы с высоким содержанием органического вещества. Высокие значения скоростей аккумуляции главных компонентов и тяжелых металлов близки к величинам, известным для начальных протоокеанических стадий развития рифтогенных бассейнов.

Позднемеловой этап (поздний альб—маастрихт) характеризуется переходным режимом седиментации и соответствующими геохимическими параметрами. Отмечается заметное снижение концентраций тяжелых металлов, скоростей их аккумуляции. Важнейшей особенностью этапа являются высокие скорости накопления CaCO<sub>3</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и P в раннем маастрихте. В это время западный район гор Маркус-Неккер находился в экваториальной зоне высокой биологической продуктивности (при общем направленном к северу движении Тихоокеанской плиты).

Кайнозойский этап (палеоцен—голоцен) отличался наличием перерывов (поздний маастрихт—ранний зоцен; средний зоцен—поздний олигоцен; поздний олигоцен—поздний миоцен) при относительно стабильном режиме накопления фораминиферово-наннопланктонных илов. Во многих случаях базальные слои обогащены остаточными продуктами растворения: глинистыми фазами, гидроокислами марганца, фосфатами.

В целом для исследованного разреза устанавливается отчетливая геохимическая эволюция седиментации от относительно мелководных вулканогенных карбонатных отложений раннего мела до пелагических нанноилов плейстоцена.

## ГЕОХИМИЧЕСКАЯ ИСТОРИЯ ПОСТЮРСКОЙ СЕДИМЕНТАЦИИ В северном районе возвышенности хесса, СКВ. 464

•

Возвышенность Хесса является одной из крупнейших подводных асейсмических структур северо-западной части Тихого океана; к числу подобных структур принадлежат возвышенности Шатского и Магеллана, подводные плато Манихики и Онтонг-Джава, а также подводные горы Маркус-Неккер. Накопленные к настоящему времени данные позволяют считать, что в течение большей части постюрской истории эти структуры располагались, как правило, выше уровня карбонатной компенсации. Таким образом, на них может быть развит относительно полный разрез осадков.

Мы попытались на основании изучения химизма главных компонентов, тяжелых металлов, рассеянных элементов и данных по минералогии и литологии выявить основные черты геохимической истории седиментации данного района, которые зарегистрированы в химическом, минеральном составе осадков.

## МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Работа основывается на данных исследования химического, минерального состава, литологических особенностей отложений, вскрытых скв. 464. Изучение проводилось в Геологическом институте АН СССР. Методические особенности проводившихся исследований изложены в предыдущем разделе, посвященном скв. 463.

Необходимо подчеркнуть, что разрез скв. 464 охарактеризован сравнительно малым количеством образцов керна, особенно для мезозойских отложений (ранний сеноман альб), сложенных преимущественно карбонатными кремнистыми породами. Такая ограниченность кернового материала, его довольно слабая палеонтологическая, биостратиграфическая охарактеризованность, соответственно небольшое число химических анализов позволяют рассматривать полученные выводы как предварительные для северной части возвышенности Хесса, а их интерпретация может проводиться лишь в общем контексте всей геологической, литологической, геохимической информации по данному региону.

Так, стратиграфическое расчленение серии "бурых глин" принималось на основании результатов изучения остатков ихтиолитов, которое провели П. Дойл и В. Ридель [Doyle, Riedel, 1981]. Причем стратиграфический объем нижней части серии (керны 9 и 10),

датируемый этими авторами в целом как поздний мел, условно интерпретируется в настоящей работе по корреляции со смежными районами (скв. 171 и 310) как турон маастрихт. Предполагалось, что серия "бурых глин" сложена генетически близкими отложениями, накапливавшимися без существенных перерывов.

## ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ КОМПОНЕНТОВ

Изучение парагенетических ассоциаций компонентов, как и в случае скв. 463, проводилось на основе обработки по методу факторного анализа как непосредственно данных химического анализа, представленных в весовых процентах, пересчитанных на воздушно-сухую навеску, так и результатов пересчета этих данных на БТККВ.

## Ассоциации, выявляемые на основе данных химического анализа (табл. 8–10; рис. 7)

Ассоциация IA (+): SiO<sub>2</sub> (0,98), C<sub>орг</sub> (0,21), Ca (0,12). Данная ассоциация представлена биогенным кремнеземом типа опала-CT, с которым относительно слабо ассоциирует  $C_{opr}$ . Наиболее ярко она развита в сеноманском опалово-глинистом осадке (обр. 11–1–28–29), содержащем глубокоизмененный гиалопелитовый материал, реликты диатомовых, выделения халцедона, кварца. Близкий состав имеют раннеплиоценовые туфогенные осадки (обр. 3–1–60–64, см. рис. 7), в которых содержание остатков диатомовых достигает 40%, спикул кремнистых губок 20%, радиолярий 10%.

Ассоциация IB (–): Al<sub>2</sub>O<sub>3</sub> (–0,29), Mg (–0,97), Na<sub>2</sub>O (–0,52), K<sub>2</sub>O (–0,36), Fe (0,86), Mn (–0,70), P (–0,17), Cr (–0,34), Ni (–0,49), V (–0,74), Cu (–0,34), Co (–0,25), Pb (–0,56), Mo (–0,48). Данная группировка представлена глубоко измененной гиалопелитовой базальтовой вулканокластикой, сложенной остатками тефры, гидроокислами железа и марганца, монтмориллонит-гидрослюдистыми компонентами. Она может рассматриваться как пример полистадийного формирования ассоциации: а) окисление базальтовой гиалопелитовой вулканокластики, развитие корок, выделений гидроокислов Fe и Mn (обр. 9–1–30–32, 5–5–70–72 и др.) по вулканогенным частицам благоприятствовали концентрированию тяжелых металлов; б) преобразование вулканокластического материала в смешаннослойные тонкодисперсные фазы поровых растворов Mg и K.

Примечательна выраженная локализация данной группировки компонентов в разрезе (см. рис. 7). Наиболее отчетливо она наблюдается в базальных осадках, знаменующих начало вспышки эксплозивного базальтового вулканизма, главным образом в основании вулканогенной серии "бурых глин" позднемелового—среднемиоценового возраста [Doyle, Riedel, 1981], залегающих с перерывом на красно-бурых силицитах, в меньшей мере — в известняках сеномана, в низах серии существенно вулканогенных кремнистых глин среднемиоценового возраста и в основании глинистых радиоляриевых илов, глинистых кремнистых илов позднего плиоцена—плейстоцена.

Ассоциация IIA (+): SiO<sub>2</sub> (0,13), Al<sub>2</sub>O<sub>3</sub> (0,38), Na<sub>2</sub>O (0,78), P (0,73), Cr (0,32), V (0,33), Cu (0,72), Mo (0,37). Сопоставление набора компонентов этой группировки с данными изучения минерального состава дает основание считать, что ассоциация представлена алюмосиликатной фазой типа цеолита, с которой тесно связаны P, Cu и ряд тяжелых металлов. Распространение группировки ограничено вулканогенными кремнистыми гиалопелитовыми осадками верхов сеномана и вулканогенной серией "бурых глин" позднего мела-среднего миоцена.

Ассоциация IIB (—): СаО (—0,86), СО<sub>2</sub> (0,87), С (—0,62), Ge (—0,62). Эта ассоциация представлена биогенным карбонатом кальция, с которым тесно связан С<sub>орг</sub>. Входящий в состав группировки Ge, очевидно, ассоциирует с С<sub>орг</sub>, образуя металлоорганические соединения. Ассоциация развита в осадках раннего плиоцена-плейстоцена, содержащих остатки карбонатного нанномикрита (до 20%).

Ассоциация IIIA (+):  $Al_2O_3$  (0,80), MgO (0,16),  $K_2O$  (0,65), Fe (0,35), Mn (0,67), P (0,53), Cr (0,80), Ni (0,82), V (0,49), Cu (0,30), Co (0,93), Pb (0,57), Ga (0,90), Ge (0,47), Mo (0,72). Результаты минералогических исследований и набор компонентов ассоциации дают основание считать, что она представлена тонким гиалопелито-





Рис. 7. Стратиграфическое распределение факторных значений главных парагенетических ассоциаций химических компонентов в разрезе постюрских отложений скв. 464

Глинистые компоненты (к рис. 7 и 9): 1 — полимеральная ассоциация, главным образом иллит, смещанноспойная фаза монтмориллонит-иллит и хлорит с примесью кварца, тридимита и кристобалита; 2 — преобладание смещаннослойной фазы монтмориллонит-иллит с малой примесью иллита, хлорита и цеолитов

Литология - см. на рис. 2

вым материалом базальтового состава, существенно преобразованным в гидрослюдистые компоненты. Можно полагать, что такое преобразование сопровождалось формированием гидроокисных железо-марганцевых выделений, обрастаний, образованием алюмофосфатных, железо-фосфатных соединений, с которыми тесно связаны тяжелые металлы, в частности Cr, Ni, Co, Ga, Mo.

Ассоциация развита преимущественно в верхней половине серии вулканокластических "бурых глин" (IB) среднего миоцена. Для этих осадков характерна существенная обогащенность базальтовым тефрогенным материалом, в том числе осколками бурого стекла и гидроокислами Fe и Mn.

Ассоциация IIIB (-): CO2 (-0,46), SiO2 (-0,09), C (-0,01), CaO (?). Для данного

|             |                  |                                |                                |       |      | ]          |                   | -    |       |      |      | <u> </u> |
|-------------|------------------|--------------------------------|--------------------------------|-------|------|------------|-------------------|------|-------|------|------|----------|
| № обр.      | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | CaO   | MgO  | MnO        | Na <sub>2</sub> O | κ,0  | CO3   | С    | P20  |          |
| 2_1-115-119 | 40,53            | 4,67                           | 6,74                           | 16,30 | 3,22 | +-<br>0,17 | 4,00              | 2,05 | 11,30 | Нет  | 0,11 |          |
| 3-1-60-64   | 51,51            | 3,96                           | 5,25                           | 8,30  | 2,62 | 0,21       | 4,53              | 2,01 | 5,10  | 0,15 | 0,07 |          |
| 4-1-130-134 | 43,73            | 4,48                           | 5,88                           | 11,81 | 3,12 | 0,07       | 4,21              | 2,40 | 7,75  | 0,01 | 0,13 |          |
| 5-5-70-72   | 44,85            | 12,53                          | . 10,15                        | 3,74  | 3,81 | 2,27       | 3,46              | 3,29 | Нет   | Нет  | 1,48 |          |
| 629597      | 46,53            | 12,77                          | 13,68                          | 3,01  | 3,12 | 0,84       | 2,51              | 3,72 | "     | "    | 0,72 |          |
| 6-3-94-96   | 46,75            | 14,65                          | 7,98                           | 3,97  | 2,94 | 1,77       | 3,18              | 3,29 | "     | "    | 1,40 |          |
| 7-3-120-122 | 46,36            | 12,98                          | 11,33                          | 1,40  | 3,62 | 0,28       | 3,46              | 4,58 | **    |      | 0,24 |          |
| 8-2-13-15   | 46,99            | 12,93                          | 12,28                          | 1,63  | 2,87 | 0,40       | 2,89              | 6,10 | **    | **   | 0,38 |          |
| 9-1-30-32   | 26,59            | 7,96                           | 28,77                          | 2,63  | 5,48 | 2,69       | 2,99              | 2,44 | **    | **   | 0,99 |          |
| 11-1-28-29  | 82,68            | 3,68                           | 2,14                           | 0,82  | 1,76 | 0,01       | 1,05              | 0,96 | **    | "    | 0,55 |          |

Таблица 8 Химический состав отложений мезозоли кайнозолскв. 464 (вес. % в пересчете на воздушно-сухую навеску)

| φ                       | Факторные значения ассоциации после вращения |                   |              |              |              |  |  |  |  |  |  |  |
|-------------------------|----------------------------------------------|-------------------|--------------|--------------|--------------|--|--|--|--|--|--|--|
| IA(+)                   | <b>IB</b> (-)                                | ША(+)             | ПВ(-)        | ШA(+)        | ШВ(-)        |  |  |  |  |  |  |  |
| 0,5 1,0 1, <b>5 2,0</b> | 0,51,01,52,0                                 | - 0,5 1,0 1,5 2,0 | 0,51,01,52,0 | 0,51,01,52,0 | 0,51,01,52,0 |  |  |  |  |  |  |  |
|                         |                                              |                   |              |              |              |  |  |  |  |  |  |  |
|                         |                                              |                   |              |              |              |  |  |  |  |  |  |  |
|                         |                                              |                   |              |              |              |  |  |  |  |  |  |  |
|                         |                                              |                   |              |              |              |  |  |  |  |  |  |  |
| 3                       |                                              |                   | 1            |              | 1            |  |  |  |  |  |  |  |
|                         |                                              |                   | 8            |              |              |  |  |  |  |  |  |  |
|                         |                                              |                   |              |              |              |  |  |  |  |  |  |  |
| 8                       |                                              |                   |              | 8            |              |  |  |  |  |  |  |  |
|                         |                                              |                   |              | [            |              |  |  |  |  |  |  |  |
|                         |                                              |                   | 1            | 1            |              |  |  |  |  |  |  |  |



| _                 |       |      |    | n · 10 <sup>-4</sup> |           |     |    |    |    |     |     |  |  |
|-------------------|-------|------|----|----------------------|-----------|-----|----|----|----|-----|-----|--|--|
| ⊢е <sub>вал</sub> | Мпвал | Рвал | Cr | Ni                   | V         | Cu  | Co | РЬ | Ga | Ge  | Мо  |  |  |
| 4,71              | 0,13  | 0,05 | 18 | +  <br>48            | 43        | 115 | 13 | 16 | 5  | < 1 | 1.6 |  |  |
| 3,67              | 0,16  | 0,03 | 20 | 112                  | <b>49</b> | 108 | 20 | 16 | 7  | 1.3 | 2.8 |  |  |
| 4,11              | 0,05  | 0,06 | 22 | 65                   | 72        | 62  | 18 | 19 | 7  | 1.2 | 1.5 |  |  |
| 7,10              | 1,76  | 0,65 | 58 | 500                  | 140       | 202 | 87 | 67 | 9  | 1   | 80  |  |  |
| 9,57              | 0,65  | 0,31 | 58 | 178                  | 170       | 190 | 44 | 36 | 11 | 1.1 | 30  |  |  |
| 5,58              | 1,37  | 0,61 | 62 | 500                  | 130       | 160 | 84 | 59 | 9  | 1.4 | 100 |  |  |
| 7,92              | 0,22  | 0,10 | 60 | 98                   | 135       | 135 | 24 | 11 | 8  | 1   | 3.9 |  |  |
| 8,59              | 0,31  | 0,17 | 70 | 75                   | 142       | 130 | 32 | 14 | 8  | < 1 | 89  |  |  |
| 20,12             | 2,08  | 0,43 | 40 | 215                  | 400       | 245 | 27 | 64 | 5  | < 1 | 80  |  |  |
| 1,50              | 0,01  | 0,24 | 14 | 15                   | 28        | 152 | 10 | 10 | 5  | < 1 | 1.5 |  |  |

•



Рис. 8. Дифрактограммы образцов вулканогенных "бурых глин" скв. 464

Состояние образца: а – природный; б – насыщенный глицерином; е – про каленный при 550°С I – обр. 7–5–45–48, представлен гаммой неупорядоченных весьма тонкодисперсных смешаннослойных минералов монтмориллонит-спюда с переменным содержанием разбухающих и неразбухающих споев, присутствуют следовые количества гидрослюды, примесь: основной плагио клаз типа лабрадор-битовнит, цеолит типа филиппсита, кварц; II – обр. 10–3–72–75, весьма тонкодисперсная смешаннослойная неупорядоченная фаза монтмориллонит-слюда, примесь: гидрослюда, цеолит типа клиноптилолита, кварц

набора компонентов минеральная природа фаз, представляющих ассоциацию, недостаточно ясна. Однако соотнесение интервалов ее наиболее выраженного развития с реальным минеральным составом осадков, наблюдаемым в шлифах под микроскопом и выявляемым при помощи рентгеновских дифрактограмм, позволяет считать, что она представлена карбонатом кальция, присутствующим в форме остаточного нанномикрита. В этом аспекте рассматриваемая группировка компонентов близка к ассодиации IIB (–). Последняя, как отмечалось, представлена преимущественно карбонатом кальция в форме фораминиферово-нанномикритовых компонентов.

| Та                            | блица 9     |             |             |
|-------------------------------|-------------|-------------|-------------|
| Результаты факторного анализа | (Я-анализа) | химических  | KOMIOHOHTOB |
| отложений мезоз               | юя и кайноэ | оя скв. 464 |             |

| Компонент | Факторн<br>вращени | ные нагруз<br>ия | ки после        | 16-            | Факторные нагрузки после<br>вращения |                |                 |  |
|-----------|--------------------|------------------|-----------------|----------------|--------------------------------------|----------------|-----------------|--|
|           | Фак-<br>тор I      | Фак-<br>тор II   | Фак-<br>тор III | Компонент      | Фак-<br>тор I                        | Фак-<br>тор II | Фак-<br>тор III |  |
|           | 0,98               | 0,13             |                 | Ni             | -0,49                                | -0,06          | 0,82            |  |
| A1, 0,    | -0,29              | 0,38             | 0,80            | V              | 0,74                                 | 0,33           | 0,49            |  |
| CaO       |                    | 0,86             |                 | Cu             | 0,34                                 | 0,72           | 0,30            |  |
| MgO       | 0,97               | 0,03             | 0,16            | Co             | 0,25                                 |                | 0,93            |  |
| Na, O     | -0,52              | 0,78             |                 | Pb             | -0,56                                |                | 0,57            |  |
| κ,0       | 0,36               |                  | 0,65            | Ga             | 0,12                                 |                | 0,90            |  |
| co,       | 0,01               | 0,87             | -0,46           | Ge             |                                      | 0,62           | 0,47            |  |
| c         | 0,21               | -0,62            | -0,01           | Мо             | 0,48                                 | 0,37           | 0,72            |  |
| Fe        | 0,86               |                  | 0,35            | Вклад в дис-   | 51,13                                | 19,96          | 11,77           |  |
| Mn        | 0,70               |                  | 0,67            | персию, %      |                                      |                |                 |  |
| P         | 0,17               | 0,73             | 0,53            | Суммарная дис- | 51,13                                | 71,09          | 82,86           |  |
| Cr        | -0,34              | 0,32             | 0,80            | персия, %      |                                      |                |                 |  |

# Таблица 10 Страти графическое распредаление значений фекторов для химических компонентов отложений мезозоя и кайнозоя скв. 464

| <b>10</b> - C- | Стратиграфическое                | Факторные значения после вращения |           |            |  |  |  |
|----------------|----------------------------------|-----------------------------------|-----------|------------|--|--|--|
| N° 00p.        | подразделение                    | Фактор I                          | Фактор II | Фактор III |  |  |  |
| 2-1-115-119    | Верхний плиоцен                  | -0,60                             | 0,82      |            |  |  |  |
| 3-1-60-64      | Нижний плиоцен                   | 0,63                              | -1,86     | -0,02      |  |  |  |
| 4-1-130-134    | Тоже                             | 0,06                              | -1,38     | 0,56       |  |  |  |
| 5-5-70-72      | Средний миоцен                   | -0,42                             | 0.43      | 1,03       |  |  |  |
| 6-2-95-96      | . Верхний эоцен—нижний<br>миоцен | 0,09                              | 0,43      | 0,95       |  |  |  |
| 639496         | То же                            | 0,39                              | -0,16     | 1,75       |  |  |  |
| 7-3-120-122    | Палеоцен                         | -0,08                             | 0,38      | 0,05       |  |  |  |
| 8-2-13-15      | er                               | 0,14                              | 0,51      | 0,36       |  |  |  |
| 9-1-30-32      | Верхний мел                      | -2,21                             | 0,94      | -0,71      |  |  |  |
| 11-1-28-29     | Сеноман                          | 2.00                              | 1.52      | -1,39      |  |  |  |

# Ассоциации, выявляемые на основе данных химического анализа, пересчитанных на БТККВ (табл. 11—13; рис. 9)

Ассоциация IA (+): Fe (0,84), Mn (0,72), P (0,31), Cr (0,64), Ni (0,39), V (0,79), Co (0,15), Ga (0,29), Mo (0,79). Ассоциация представлена преимущественно оксигидроокисными соединениями Fe и Mn и связанными с ними тяжелыми металлами. Особое место занимают, очевидно, железо-фосфатные фазы. Распространение группировки отчетливо ограничено серией вулканогенных "бурых глин" (серия II) позднемелового-среднемиоценового возраста. Снятие разбавляющего эффекта силикатных компонентов позволяет представить в более явном виде геохимическое значение гидроокислов Fe и Mn, развитых по базальтовой вулканокластике и в форме самостоятельных выделений (см. ассоциации IIA (+) и IIIA (+) на рис. 7 и в табл. 8–10). Таким образом, набор компонентов данной ассоциации свидетельствует, что главным обра-

Таблица 11 Химический состав отложний мезозоя и кайнозоя скв. 464 (вес. % в пересчете на БТККВ)

| № обр.      | CaO    | MgO    | Na <sub>2</sub> O | к,0    | Fe <sub>вал</sub> | Mn <sub>вал</sub> | Рвал  |
|-------------|--------|--------|-------------------|--------|-------------------|-------------------|-------|
| 2-1-115-119 | 8.149  | 20,694 | 29,080            | 10,750 | 30,085            | 0,875             | 0,246 |
| 3-1-60-64   | 8,894  | 17,740 | 35,479            | 11,903 | 24,465            | 1,198             | 0,122 |
| 4-1-130-134 | 8,705  | 20,169 | 30,877            | 13,690 | 25,831            | 0,270             | 0,331 |
| 5-5-70-72   | 15,633 | 15,925 | 14,462            | 13,752 | 29,677            | 7,357             | 2,717 |
| 6-2-95-97   | 13,108 | 13,587 | 10,931            | 16,200 | 41,676            | 2,831             | 1,350 |
| 6-3-94-96   | 18,859 | 13,966 | 15,107            | 15,629 | 26,508            | 6,508             | 2,898 |
| 7-3-120-122 | 6,558  | 16,957 | 16,208            | 21,454 | 37,100            | 1,031             | 0,468 |
| 8-2-13-15   | 7.207  | 12,690 | 12,779            | 26,972 | 37,982            | 1,371             | 0,752 |
| 9-1-30-32   | 7,250  | 15,106 | 8,242             | 6,726  | 55,461            | 5,734             | 1,185 |
| 11-1-28-29  | 12.886 | 27.657 | 16,500            | 15.086 | 23,571            | 0,157             | 3,771 |

Таблица 12

Результаты факторного анализа (*R*-анализа) химических компонентов (в пересчете на БТККВ) отложений мезозол и кайнозол скв. 464

| Компонент         | Фактори<br>вращени | ные нагруз<br>ия | ки после        |                           | Факторные нагрузки после<br>вращения |                |                |  |
|-------------------|--------------------|------------------|-----------------|---------------------------|--------------------------------------|----------------|----------------|--|
|                   | Фак-<br>тор I      | Фак-<br>тор II   | Фак-<br>тор III | Компонент                 | Фак-<br>тор I                        | Фак-<br>тор II | Фак-<br>тор II |  |
| CaO               | -0,12              | 0,35             | -0,91           | v                         | +                                    | 0,39           |                |  |
| MgO               | -0,85              | 0,17             |                 | Cu                        | -0,36                                | 0,67           |                |  |
| Na <sub>2</sub> O | 0,83               | 0,39             | 0,12            | Со                        | 0,15                                 | 0,43           | -0,79          |  |
| K <sub>1</sub> O  |                    | 0,59             | 0,24            | Pb                        | 0,08                                 | 0,06           | -0,92          |  |
| Fe                | 0,84               | -0,12            | 0,31            | Ga                        | 0,29                                 | 0,90           | 0,24           |  |
| Mn                | 0,72               | -0,27            | 0,56            | Ge                        | •                                    | 0.58           | •              |  |
| P                 | 0,31               | 0,65             | -0,54           | Мо                        | 0,79                                 | 0,15           | -0,50          |  |
| Cr                | 0,64               | 0,72             | -0,19           | Вклад в дис-              | 43,77                                | 21,57          | 14,61          |  |
| Ni                | 0,39               |                  | -0,84           | персию, %                 | ·                                    | • -            | •              |  |
|                   |                    |                  |                 | Суммарная<br>дисперсия, % | 43,77                                | 65,34          | 79,95          |  |

# Таблица 13

Стратиграфическое распредаление значений факторов для химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 464

|                                 | Страти графическое              | Фактор   | Факторные значения после вращения |            |  |  |  |  |  |
|---------------------------------|---------------------------------|----------|-----------------------------------|------------|--|--|--|--|--|
| № обр.                          | подразделение                   | Фактор I | Фактор II                         | Фактор III |  |  |  |  |  |
| 2-1-115-119                     | Верхний плиоцен                 | 1.11     | _1,10                             | 0,67       |  |  |  |  |  |
| 3-1-60-64                       | Нижний плиоцен                  | -1,08    | 0,98                              | -0,20      |  |  |  |  |  |
| 4-1-130-134                     | То же                           | -0,93    | -0,98                             | 0,41       |  |  |  |  |  |
| 5-5-70-72                       | Средний миоцен                  | 0,40     | 0,08                              | -1,58      |  |  |  |  |  |
| 6–2 <i>–</i> 95– <del>9</del> 7 | Верхний зоцен—<br>нижний миоцен | 0,63     | 0,80                              | 0,31       |  |  |  |  |  |
| 6-3-94-96                       | То же                           | 0,33     | 0,13                              | -1,83      |  |  |  |  |  |
| 7-3-120-122                     | Палеоцен                        | 0,51     | 0,55                              | -1,39      |  |  |  |  |  |
| 8-2-13-15                       | **                              | 1,19     | 0,55                              | 1,20       |  |  |  |  |  |
| 9-1-30-32                       | Верхний мел                     | 1,51     | -1,03                             | 0,20       |  |  |  |  |  |
| 11-1-28-29                      | Сеноман                         | -1.45    | 2,13                              | 0,05       |  |  |  |  |  |

| Cr    | Ni    | v     | Cu    | Co    | РЬ    | Ga    | Ge     | Mo    |
|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| ∔     | 0,019 | 0,009 | 0,078 | +     | 0,008 | _     | 0,0004 | 0,001 |
| -     | 0,076 | 0,019 | 0,079 | 0,013 | 0,010 | 0,001 | 0,001  | 0,002 |
| _     | 0,033 | 0,033 | 0,038 | 0,010 | 0,011 | _     | 0,0005 | 0,001 |
| 0.024 | 0,209 | 0.059 | 0,084 | 0,036 | 0,028 | 0,004 | 0,0004 | 0,033 |
| 0.025 | 0,078 | 0.074 | 0.083 | 0,019 | 0.016 | 0,005 | 0,005  | 0,013 |
| 0,029 | 0,238 | 0.062 | 0.076 | 0,040 | 0.028 | 0.005 | 0,001  | 0,048 |
| 0.028 | 0,046 | 0.063 | 0.063 | 0,011 | 0.004 | 0.004 | 0.0005 | 0,002 |
| 0.031 | 0,033 | 0,063 | 0.057 | 0,014 | 0.006 | 0,004 | 0,0004 | 0,039 |
| 0.011 | 0,059 | 0.110 | 0.068 | 0,007 | 0.018 | 0.001 | 0,0003 | 0,022 |
| 0.022 | 0,024 | 0,044 | 0,239 | 0,016 | 0,016 | 0,008 | 0,002  | 0,002 |

зом гидроокислы Fe и Mn выполняют геохимическую роль коллекторов, концентрирующих тяжелые металлы.

Ассоциация IB (–): CaO (–0,12), MgO (–0,85), Na<sub>2</sub>O (–0,83), Cu (–0,36). Набор компонентов этой группировки, особенности ее локализации в разрезе (см. рис. 9) и данные изучения минерального состава позволяют считать, что она представлена некоторой смектитовой фазой, не связанной с базальтовой вулканокластикой, являющейся весьма существенной составляющей осадков для раннего плиоцена–плейстоцена и сеномана (см. рис. 9).

Ассоциация IIA (+): СаО (0,35), Mg (0,17), K<sub>2</sub>O (0,59), P (0,65), Cr (0,72), V (0,39), Cu (0,67), Co (0,43), Ga (0,90), Ge (0,58), Mo (0,15). Ассоциация представлена гидрослюдистыми фазами, присутствующими как самостоятельно, так и в виде смешаннослюйных образований типа монтмориллонит-слюда, развитых по тонкому вулканокластическому, преимущественно гиалопелитовому материалу базальтового состава. С собственно гидрослюдистыми минералами тесно связаны P (алюмофосфатные соединения) и тяжелые металлы, главным образом Cr, Ga, Cu, Ge и др. Распространение группировки ограничено осадками кровли нижнего сеномана и вулканокластическими "бурыми глинами" (серия II) предположительно позднемелового—среднемиоценового возраста (см. рис. 9).

Ассоциация IIB (–): Na<sub>2</sub>O (–0,39), Fe (–0,12), Mn (–0,27). Ассоциация представлена гидроокислами Mn, в меньшей мере – Fe и связанным с ними Na. Отсутствие в составе ассоциации тяжелых металлов и ее распространенность в базальном основании вулканокластических "бурых глин" и кремнистых, существенно вулканогенных осадков (серии IA и IB, ранний плиоцен–плейстоцен) позволяют считать, что она представлена позднедиагенетическими и эпигенетическими выделениями гидроокислов Mn с незначительной примесью Fe, образовавшимися за счет изменения вулканокластики. Подобные выделения отчетливо наблюдаются в шлифах под микроскопом в весьма ограниченных количествах (не более 5%).

Ассоциация IIIA (+): Na<sub>2</sub>O (0,12), K<sub>2</sub>O (0,24), Fe (0,31). Она представлена гидроокислами Fe и связанными с ними K и Na. Генетическая природа этой группировки и ее распространенность в разрезе весьма близки к рассмотренной выше ассоциации IIB (-), однако в данном случае главная роль (вместо гидроокислов Mn) принадлежит гидроокислам Fe.

Ассоциация IIIB (–): CaO (–0,91), Mn (–0,56), P (–0,54), Cr (–0,19), Ni (–0,84), Co (–0,79), Pb (–0,92), Ga (–0,24), Mo (–0,50). Ассоциация представлена базальтоидной вулканокластической, существенно обогащенной анортитовой молекулой (CaO) и продуктами изменения – гидроокислами Mn, фосфатными соединениями и связанными с ними тяжелыми металлами, преимущественно Ni, Co, Pb. Встречается главным образом в верхней части вулканокластической серии (II) "бурых глин" (поздний мел-средний миоцен), в базальных осадках серии IB (средний миоцен), представленных кремнистыми, существенно вулканогенными глинами.

Таким образом, среди измененных вулканокластических компонентов, слагающих

|      |                                       |        |       | ,                | Лита                                              | логия                                   | bic<br>YTTbr       |             |
|------|---------------------------------------|--------|-------|------------------|---------------------------------------------------|-----------------------------------------|--------------------|-------------|
| по   | ратаграция-<br>ческие<br>ФОРАЗОЕЛЕНИЯ | unda:) | керн  | nugura<br>M      | samga                                             | анализи-<br>рован-<br>ных об-<br>разцоб | Глинист<br>Компоне | N≞ 0бр.     |
|      | Верхний плио-<br>цен-плайстоцан       | TΔ     | ę     | 8,8              | ול<br>ול                                          | 长长                                      |                    | 2-1-115-119 |
|      | Нижний                                |        | ,     | ы.<br>1          | <u>~_~</u> _                                      | <b>7</b>                                |                    | 3-1-60-64   |
|      | плиоцен                               | te     | -5    | 8<br>1<br>1<br>1 | <u>י</u> יל ויל ויל ויל ויל ויל ויל ויל ויל ויל ו | 13:4:4                                  |                    | 4-1-130-134 |
| νοŭ  | Средний верх-<br>ний-миоцен           | 10     | ų     | 18               |                                                   | <u>\z/\z)</u>                           |                    | 5-5-70-72   |
| SON. | Верхний зоцен-                        |        |       |                  |                                                   | $\frac{z}{z}$                           |                    | 6-2-95-97   |
| N.   | humhuu muoyen                         |        | 0     | 0,6              |                                                   | むむ                                      |                    | 6-3-9496    |
|      | Палеоцен                              | п      | 1     | Ţ                | <u>+++++</u> +++++++++++++++++++++++++++++++      | 2六/17                                   |                    | 7-3120122   |
|      | ,,                                    |        |       | Ŕ                |                                                   | 2772                                    |                    | 8-2-13-15   |
| 5    | Верзний<br>мел                        |        |       |                  |                                                   |                                         |                    | 9-1-30-32   |
| 300  | Сеноман                               | Ξ      | 11-34 | 89.0-<br>307.6   |                                                   | ないか                                     |                    | 11-1-28-29  |
|      |                                       | 5      |       |                  |                                                   |                                         |                    |             |

Рис. 9. Стратиграфическое распределение факторных значений главных парагенетических ассоциаций химических компонентов (в пересчете на БТККВ) в разрезе постюрских отложений Глинистые компоненты — см. на рис. 7, литология — на рис. 2

вулканогенную серию (II) "бурых глин", выделяются две группировки: а) главная, преобладающая IA (+), представленная гидроокислами Fe, в меньшей мере Mn, фосфатами Fe и связанными с ними тяжелыми металлами, и развитая преимущественно в нижней половине серии (поздний мел-палеоцен; см. рис. 9); б) относительно подчиненная IIIB (--) с гидроокислами Mn, фосфатами и связанными тяжелыми металлами, встречающаяся в верхней половине рассматриваемой серии (поздний эоцен -поздний-средний миоцен; см. рис. 9). Столь отчетливо выраженное разобщение в разрезе группировок компонентов, связанных с гидроокислами Fe и Mn, наводит на мысль о роли вулканических эксгаляций, гидротермальных растворов, поступавших в седиментационный бассейн вместе с преобладающим вулканокластическим материалом в начальные и конечные фазы накопления осадков данной серии. В начальные фазы в их составе преобладали соединения Fe, в конечные -- Mn.

# СРЕДНИЕ СОДЕРЖАНИЯ

## И СКОРОСТИ АККУМУЛЯЦИИ КОМПОНЕНТОВ (ТАБЛ. 14; РИС. 10-12)

Распределение средних содержаний. Анализ распределения средних содержаний компонентов (см. табл. 14, рис. 10–12) в исследуемом разрезе позволяет выделить три главных геохимических этапа седиментации: 1) позднемезозойский (поздний апт—сеноман); 2) позднемеловой (турон?) — среднемиоценовый (время накопления вулканогенной серии "бурых глин"); 3) позднекайнозойский (поздний миоцен плейстоцен).

Позднемезозой ский этап охарактеризован фрагментарными литологическими и геохимическими данными об осадках. Согласно бортовому описанию [Initial reports..., 1981], осадки объединяются в серию красно-бурых кремней (III). Однако, учитывая крайне малый выход керна, вынос мелких обломков писчего мела, мергеля, уплотненных глин, скорости бурения, авторы бортового описания считают, что в составе серии преобладают мел и мергель, а содержание кремня составляет не более 10%. Таким образом, принимая во внимание отмеченные ограничения, можно рассматривать приводимые ниже данные о средних содержаниях и скоростях аккмуляции компонентов.

В целом для позднемезозойского этапа характерно накопление содержаний SiO<sub>2</sub> и P, максимально высоких для этого разреза мезозойских и кайнозойских отложений (см. табл. 14 и рис. 10). При пересчете данных на БТККВ (см. рис. 11) отчетливо выявляются избыточные количества K<sub>2</sub>O и MgO, что может косвенно указывать на нали-

|                 | Факторные зна | ачения ассоциа | ции после вращ  | ения            |                 |
|-----------------|---------------|----------------|-----------------|-----------------|-----------------|
| IA(+)           | IB()          | ЩА(+)          | <u>П</u> В(—)   | ША(+)           | ШВ()            |
| 0,5 1,0 1,5 2,0 | 0,51,01,52,0  | 0,51,01,52,0   | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 |                 |                 |
|                 |               |                |                 | ×               |                 |
|                 |               |                |                 | 8               |                 |



чие гидрослюдисто-смектитовых компонентов, развитых по вулканокластическому материалу.

Позднемеловой (турон?) — среднемиоценовый (?) этап, возраст которого определен по остаткам ихтиолитов [Doyle, Riedel, 1981], представлен отложениями вулканогенного характера. Их импрегнированность гидроокислами Ге и Мп отчетливо отразились в необычно высоких для нормальных осадков концентрациях Fe, Mn, P и ассоциирующих тяжелых металлов (см. табл. 11, 14, рис. 10). Формы нахождения этих компонентов рассмотрены выше. Данные пересчета на БТККВ (см. табл. 11 и рис. 11) также свидетельствуют о высоких содержаниях Fe, Mn и тяжелых металлов сравнительно с осадками иных интервалов разреза.

Необходимо подчеркнуть следующие особенности: а) нижние, базальные горизонты серии, относящиеся к верхнему мелу (турон-маастрихт?), характеризуются максимальными содержаниями (в %) Fe (20,12) и Mn (2,08) при относительно низких значениях алюмосиликатных компонентов — SiO<sub>2</sub> (26,59) и Al<sub>2</sub>O<sub>3</sub> (7,96). В относительно более высоких горизонтах (палеоцен-средний миоцен) содержание Fe снижается примерно в 2–3 раза, тогда как концентрации SiO<sub>2</sub> и Al<sub>2</sub>O<sub>3</sub> соответственно увеличиваются на близкую величину. Характерно, что в кровле вулканогенных бурых глин (средний миоцен) наблюдается резкое возрастание содержаний Mn (1,49) и P (0,65) (см. табл. 14).

Позднекайнозойский этап из-за ограниченного выхода керна и соответственно относительно малого количества химических анализов может быть охарактеризован средними содержаниями компонентов лишь ориентировочно (см. табл. 8—14.

## Таблица 14

## Средние содержения и средние скорости аккумуляции химических компонентов для главных геохронологических подразделений разреза постюрских отложений скв. 464

| Лито-<br>логи-<br>ческое<br>под-<br>рез- | Литология                                                               | Кер-<br>ны | Интервал<br>глубин (от<br>поверхности | Мощ-<br>ность, | Стратиграфическое<br>подразделение             | Керны                           |             |
|------------------------------------------|-------------------------------------------------------------------------|------------|---------------------------------------|----------------|------------------------------------------------|---------------------------------|-------------|
| деле-<br>ние                             |                                                                         |            | дна), м                               | 2              |                                                |                                 |             |
| IA                                       | Глинистые<br>радиолярие-<br>вые илы, гли-<br>нистые крем-<br>нистые илы | 2–3        | 3,5–18,8                              | 15,3           | Нижний плейстоцен<br>верхний<br>Плиоцен нижний | 1-1-1-CC<br>1-CC-2-5<br>2-5-3-0 | <b>r</b> —- |
| IB                                       | Кремнистая<br>глина                                                     | 3–5        | 18,8—36,1                             | 17,3           | Средний — верхний<br>миоцен                    | 3-0 - 4-CC<br>5-1 - 5-3         |             |
| H                                        | Бурые вул-<br>каногенные                                                | 5–11       | 36,1-89,0                             | 52,9           | Средний миоцен                                 | 54 - 5-CC                       |             |
|                                          | глины*                                                                  |            |                                       |                | Верхний эоцен—<br>нижний миоцен                | 6-0 - 6-4                       |             |
|                                          |                                                                         |            |                                       |                | Нижний эоцен                                   | 64 - 6-CC                       |             |
|                                          |                                                                         |            |                                       |                | Верхний мел                                    | 7-1-8-CC                        |             |
|                                          |                                                                         |            |                                       |                | [Турон—верхний<br>мвастри хт] (?)              | 9_1 _ 11_1                      |             |
| 111                                      | Красно-бу-<br>рые кремни,                                               | 1134       | 89,0—307,6                            | 218,6          | Средний альбсено-<br>ман                       | 11-1 - 26CC                     |             |
|                                          | писчий мел,<br>Известняк                                                |            |                                       |                | Нижний альб                                    | 27-1 - 34-CC                    |             |

Примечание. 1 — среднее содержание (вес. %); 2 — средняя скорость аккумуляции (мг × х см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>). \* Стратиграфическое расчленение серии бурых вулканогенных глин по данным П. Дойла и В. Ри-дела [Doyle, Riedel, 1981].

| Стратиграфическое         | Керны                | Интервал глу-<br>бин, м |           | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> |        |   |
|---------------------------|----------------------|-------------------------|-----------|------------------|--------------------------------|--------|---|
| подразделение             |                      |                         | 1         | 2                | 1                              | 2      |   |
| Нижний плейстонен         | '<br>1-1 - 1-CC      | 0-35                    | · ·       | _ '              | _                              | '_     | 1 |
| веруний                   | 1 - 00 - 2 - 5       | 35-110                  | 40 53     | 148 9            | 4 67                           | 17 16  |   |
| Плиоцен нижний            | 2_5_3_0              | 11 0-18 8               |           | -                |                                | _      |   |
| Спелний веруний           | $3_0 - 4_0$          | 18 8-32 0               | 47 62     | 238.0            | 4 22                           | 21 1   |   |
| Среднии-верхний           | 5-0-4-00             | 32.0-36.5               |           | 200,0            | 4,22                           | 21,1   |   |
|                           | 5-4 - 5-00           | 36 6-41 5               | 44.95     | 39.03            | 12 53                          | 10.62  |   |
|                           |                      | 41 5 46 0               | 46 1 4    | 6 24             | 12,00                          | 1 90   |   |
|                           | 0-0-0-4              | 41,5-40,0               | 40,14     | 0,34             | 13,71                          | 1,05   |   |
|                           | 6-4-6-00             | 460 510                 |           |                  |                                |        |   |
| Веруний мел               | $7 - 1 - 8 \cdot CC$ | 51 0 70 0               | <br>A6 69 | <br>EQ QA        | 12.06                          | 16 34  |   |
|                           |                      | 70 0 90 0               | 40,00     | 14 22            | 706                            | 4.26   |   |
| маастрихт] (?)            | 9-1-11-1             | 70,069,0                | 20,09     | (4,22            | 7,90                           | 4,20   |   |
| Средний альб-сено-<br>ман | 11-1 - 26-CC         | 89,0-241,0              | 82,68     | 2927,07          | 3, <b>68</b>                   | 130,28 |   |
| Нижний альб               | 27–1 – 34–CC         | 241,0-308,5             | -         | -                | -                              | -      |   |

Таблица 14 (окончание)

|                                    |                   | Физичесн<br>метры* <sup>2</sup>      | кие пара-                | Геохроноло-                                                     | Скорость                                      | седи ментации * 4                                                 |
|------------------------------------|-------------------|--------------------------------------|--------------------------|-----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|
| Интервал глу-<br>бин, м            | Мощ-<br>ность, м  | Плот-<br>ность,<br>г/см <sup>3</sup> | Влаж-<br>ность,<br>%     | гическан про-<br>должитель-<br>ность, млн.<br>лет <sup>+3</sup> | м · 10 <sup>-6</sup> Х<br>Х год <sup>-1</sup> | мг · см <sup>-2</sup> Х<br>× 10 <sup>-3</sup> · год <sup>-1</sup> |
| <br>0-3,5<br>3,5-11,0<br>11,0-18,8 | 3,5<br>7,5<br>7,8 | 1,20<br>1,20<br>1,20                 | 80,0 (7)<br>71,0<br>72,4 | 1,0<br>]                                                        | 7,5                                           | <br>367,5                                                         |
|                                    |                   |                                      | }                        | 2,0                                                             | 10,5                                          | 499,8                                                             |
| 18,832,0                           | 13,2              | 1,20                                 | 72,4)                    | )                                                               | )                                             |                                                                   |
| 32,036,5                           | 4,5               | 1,20                                 | 72,4                     | 10,0                                                            | 0,45                                          | 21,42                                                             |
| 36,5-41,5                          | 5,0               | 1,34                                 | 57,6                     | 4,5                                                             | 1,11                                          | 84,80                                                             |
| 41,5 <b>46,</b> 0                  | 4,5               | 1,34                                 | 57,6                     | 25,0                                                            | 0,18                                          | 13,75                                                             |
| 46.051.0                           | 5.0               | 1,34                                 | 57,6                     | 4,5                                                             | 1,11                                          | 84,80                                                             |
| 51,0-70,0                          | 19,0              | 1,34                                 | 57,6                     | 11,5                                                            | 1,65                                          | 126,06                                                            |
| 70,089,0                           | 19,0              | 1,34                                 | 57,6                     | 27,0                                                            | 0,70                                          | 53,48                                                             |
| 89,0-241,0                         | 152,0             | 2,03                                 | 5,0                      | 8,5                                                             | 17,88                                         | 3540,24                                                           |
| 241,0-308,5                        | 67,5              | 2,03                                 | 5,0 (?)                  | 3,0                                                             | 22,50                                         | 4455,0                                                            |

\*<sup>2</sup> Определения природно-влажных образцов [Initial Reports..., 1981].
 \*<sup>3</sup> По данным Дж. Харденбола и В. Берггрена (1978 г.) [Initial Reports..., 1981] и Дж. ван Хинта [Hinte, 1976].
 \*<sup>4</sup> В пересчете на воздушно-сухой материал (с учетом природной влажности) [Initial Reports..., 1981].

| CaCO <sub>3</sub> |                   | F                 | Fe                 |                  | n                 | Р                 |                  |  |
|-------------------|-------------------|-------------------|--------------------|------------------|-------------------|-------------------|------------------|--|
| 1                 | 2                 | 1                 | 2                  | 1                | 2                 | 1                 | 2                |  |
| -<br>25,70        | 94,44             | -<br>4,71         | <br>17,30          | _<br>0,13        | <br>0,5           | <br>0,05          | 0,18             |  |
| _<br>14,61        | <br>73,02         | 3,89              | <br>19,44          | -<br>0,10        | _<br>0,50         | <br>0,04          | _<br>0,20        |  |
| —<br>Нет<br>″     | <br>0,0<br>0,0    | <br>7,10<br>7,58  | <br>6,02<br>1,04   | <br>1,76<br>1,01 | <br>1,49<br>0,14  | <br>0,65<br>0,46  | <br>0,55<br>0,06 |  |
| _<br>Нет<br>″     | 0,0<br>0,0<br>0,0 | <br>8,26<br>20,12 | <br>10,41<br>10,76 | <br>0,27<br>2,08 | _<br>0,34<br>1,11 | _<br>0,14<br>0,43 | <br>0,18<br>0,23 |  |
| **                | 0,0               | 1,50              | 53,10              | 0,01             | 0,35              | 0,24              | 8,50             |  |
| -                 | -                 | -                 | -                  | -                | -                 | -                 | -                |  |
|                   |                   |                   |                    |                  |                   |                   |                  |  |



Рис. 10. Распределение средних содержаний (вес.% в пересчете на воздушно-сухую навеску) SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и нормативной молекулы CaCO<sub>3</sub> в разрезе постюрских отложений скв. 464

рис. 10 и 11). В целом кремнистые илы с заметной примесью базальтовой (в отдельных интервалах — кислой) вулканокластики характеризуются мало меняющимися величинами средних содержний CaCO<sub>3</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и тяжелых металлов при пересчете как на воздушно-сухую навеску, так и на БТККВ.

Распределение средних скоростей аккумуляции компонентов. Методические особенности расчета средних скоростей аккумуляции осадков и компонентов уже отмечены в разделе, посвященном скв. 463. Следует подчеркнуть, что упоминавшиеся выше недостатки данного разреза (ограниченный выход керна, слабая стратиграфическая обоснованность ряда интервалов) позволяют лишь весьма приближенно оперировать величинами скоростей аккумуляции, рассматривая их в общем контексте данных по седиментации региона. Анализ средних скоростей седиментации дает основание выделить в разрезе три главных этапа, которые совпадают с этапами, установленными при анализе распределения средних содержаний компонентов.

Позднемезозой ский этап (поздний апт-сеноман) характеризуется максимальными в постюрской истории этого региона скоростями аккумуляции (мм · 10<sup>-3</sup> × × год<sup>-1</sup>): поздний апт-ранний альб – 22,5; средний альб-ранний сеноман – 17,9 (см. табл. 14 и рис. 12). Сопоставляя эти цифры с известными величинами для экваториальной зоны высокой биологической продуктивности (см. данные по скв. 463, а также сведения в других работах [Arrhenius, 1963, 1967; Богданов, Чеховских, 1979; Безруков, Романкевич, 1970; Лисицын, 1974, 1978]), можно сделать вывод, что скорости накопления осадков в раннем альбе-раннем сеномане были в два-три раза ниже. Если принять, что в течение альба северный район возвышенности Хесса находился в зоне высокой биологической продуктивности при общем направленном к северу движении Тихоокеанской плиты, то столь сокращенные значения скоростей седиментации можно

| Стратиграфическое<br>подразделение            | Fe         | Mn                     | P               | к <sub>2</sub> 0 | MgO                                                                        |
|-----------------------------------------------|------------|------------------------|-----------------|------------------|----------------------------------------------------------------------------|
|                                               | 10,0 30,0  | 1,0 2,0 3,0 4,0        | 1,0 2,0 3,0 4,0 | 4,08,012,016,0   | 5,0 15,0                                                                   |
| Верхний плейстоцен                            | 0          | 0                      | 0               | $\odot$          | $\odot$                                                                    |
| Нижний плейстацен                             | $\bigcirc$ | Ø                      | Ô               | Ø                | 0                                                                          |
| Верхний плиоцен                               |            | 8                      |                 | ******           | + <sup>+</sup> + <sup>+</sup> + <sup>+</sup> + <sup>+</sup> + <sup>+</sup> |
| Нитрий плиоцен (елинис-                       | 0          | Ø                      | 0               | Ø                | 0                                                                          |
| NUMMUU TAUDUEN<br>(KDEMMUOMAA SAYNA)          |            |                        |                 |                  | +++++                                                                      |
| Средний-бертний мирцен<br>(Кремнирства глима) | 0          | 0                      | 0               | 0                | 0                                                                          |
| Средний мирцен                                |            | ‱7,36. <sup>°</sup> .‱ |                 | ********         | +++++                                                                      |
| Нитпий миоцеп                                 |            |                        |                 |                  | + + +                                                                      |
| Верхний олигоцен                              |            |                        |                 |                  | + + + +                                                                    |
| Нитний олигоцен                               |            |                        |                 |                  | + + + +                                                                    |
| Верхний зоцен                                 |            |                        |                 |                  | ++++                                                                       |
| Сревний зоцен(?)                              |            | D D                    | 0               | 0                |                                                                            |
| Нитний зацен                                  | 0          | 0                      | 0               | Ø                |                                                                            |
| Верхний палеоцен                              |            | ***                    | N               | ****             | + + + +                                                                    |
| Нижний палеоцен 5 💈                           |            | ***                    | N               |                  | + + + +                                                                    |
| верхний маастрихт                             |            |                        | $\nabla$        | ****             | +++++                                                                      |
| Нимний маастрият 🖌                            |            | *****                  | $\sim$          |                  | ++++                                                                       |
| Верхний кампан                                |            | ****                   |                 |                  | [+ + + ]                                                                   |
| HUMMUU KAMAAH                                 |            | **** ****              |                 |                  | +++                                                                        |
| Верхний сантон                                |            | *** ***                | $\sim$          |                  | + + + + <br> + + + +                                                       |
| RUMHUU CAHTTOH                                | 55,46      | 🗱 <sup>5,73</sup> 💥    | $\sim$          |                  | +++++                                                                      |
| верзици конояк                                |            | **** ****              |                 |                  | +`+`+`+                                                                    |
| HUMHUU KUHBAK                                 |            | ****                   | N               |                  | + + + +                                                                    |
| оврасниц турон                                |            |                        |                 |                  | ++++                                                                       |
| Среании туран                                 |            |                        | $\mathbb{N}$    |                  | ++++++                                                                     |
| numhuu nigpuh                                 |            |                        |                 |                  | · + · + · + ·                                                              |
| аеряниц сеноман                               | 0          | 0                      | <b>O</b>        | 0                | <u> </u>                                                                   |
| Средний сеноман                               | 0          | 0                      | Q               | O I              | 0                                                                          |
| numnuŭ cenoman                                |            | 8                      |                 |                  | + + + + + <b>+</b> +                                                       |
| верхний альб                                  |            | N .                    | $\mathcal{N}$   |                  | + + 27,66+++                                                               |
| Среоний альб                                  |            |                        | V///V           |                  | <u>+++++++++++++++++++++++++++++++++++++</u>                               |
| верхниц апт                                   | Ø          | 0                      | 0               | 0                | <u> </u>                                                                   |

Рис. 11. Распределение средних содержаний (вес.% в пересчете на БТККВ) Fe, Mn, P, K<sub>2</sub>O и MgO в разрезе постюрских отложений скв. 464

объяснить тем, что накопление осадков происходило существенно ниже уровня лизоклина, а в отдельные интервалы — ниже глубины карбонатной компенсации.

Следствием высоких темпов седиментации этого этапа, весьма специфического состава накапливавшихся осадков (существенная роль принадлежит кремнистым образованиям) являются относительно большие скорости аккумуляции SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и Fe при относительно умеренных величинах для Mn (см. табл. 14 и рис, 12).

Позднемеловых и палеоценовых — 10,76) и заключительных (среднемиоценовых – 6,02) интервалов накопления Fe (мг с  $x^{-2} \cdot 10^{-3} \cdot roq^{-1})$  отмечены для ранних сировых – 10,76) и заключительных (среднемиоценовых – 6,02) интервалов накопления Fe (мг с  $x^{-2} \cdot 10^{-3} \cdot roq^{-1})$ ) отмечены для ранних (позднемеловых и палеоценовых – 10,76) и заключительных (среднемиоценовых – 6,02) интервалов накопления скорости накопления вулканогах высокие скорости накопления более контрастное высокие скорости накопления с смакти с смакти и состать с смакти и палеоценовых – 10,76) и заключительных (среднемиоценовых – 6,02) интервалов накопления с смакти и скорости накопления водектории и скорости накопления с скорости накопления в соста с скорости накопления с смактических соста с смактических выражена в более контрастном виде: поздний мел – 1,11, средний миоцен – 1,49, В промежуточные интервалы скорости накопления Вираканокластических компонентов.

Если оперировать лишь собственно скоростями аккумуляции (мг·см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>) Мп и Fe, то они не превышают величин, известных для пелагических областей открытого океана: Fe – 2,4–9,0; Mn – 0,4–4,0 [Arrhenius, 1967; Boström, 1973; Mac Arthur,

|                             | Скорость сей           | Au <i>me</i> nmayau    |              |                                 |                                               |                                              |                 |
|-----------------------------|------------------------|------------------------|--------------|---------------------------------|-----------------------------------------------|----------------------------------------------|-----------------|
| <i>Возраст</i>              | <i>[</i><br>5 10 15 20 | <u>]]</u> :<br>200 600 | <b>CeCO3</b> | <b>SiO</b> 2<br>100 200 300 400 | Al <sub>2</sub> O <sub>2</sub><br>20 40 60 80 | Fe 20 40 60 80                               | Mn<br>0204.0608 |
| REATHING A DESCRIPTION      | <u> </u>               | <u> </u>               | 6            | 0                               | <u> </u>                                      | <u> </u>                                     | <u>+++++</u>    |
| Нихоний плействиен          | ð                      | <u> </u>               | <del>ň</del> | ő.                              | 6                                             | <u> </u>                                     | <u> </u>        |
| Верхний плинием             | ्य                     |                        |              |                                 |                                               |                                              |                 |
| Heregrand Rawourse (2. Same |                        |                        | Ø            | Ø                               | Ø                                             | 0                                            | <u> </u>        |
| HERINGE ALENET (SPER-       |                        |                        |              | Ĩ                               |                                               |                                              |                 |
| CASENEE-BEASINEE MUSEEN     | 0,45                   | 1                      | <b>O</b>     | Ø                               | Ô                                             | 0                                            | Ū.              |
| Средний миоцен 🖡            | 8                      |                        | 0,0          |                                 |                                               |                                              | XXX 1,49 XXXX   |
| Нижний миацен               | 1                      | <u>ا</u>               |              |                                 |                                               | <u>1</u>                                     | ×.              |
| вераний олигоцен            | +0.18                  | 413.75                 | h            | 6.34                            |                                               |                                              |                 |
| NUMMUM OMUZGUEN             |                        |                        | 0,0          |                                 | _                                             | <b></b>                                      | 8               |
| BEDITHUU JOYEN              | J                      |                        | <u> </u>     | ,                               |                                               | <u>,                                    </u> | <u>88</u>       |
| Сревний зоцен !             | <u> </u>               | U U                    | <u> </u>     |                                 |                                               | <u> </u>                                     | <u> </u>        |
| Патний зоцен                | 1<br>M                 |                        | 0,0          | <u> </u>                        |                                               |                                              |                 |
| Нижний паления              | E                      |                        | 0,0          |                                 |                                               |                                              |                 |
| Rearment mancourne          | <u>[]</u>              |                        | <u> </u>     | L                               |                                               | Ē                                            |                 |
|                             |                        | Š.                     |              |                                 |                                               |                                              |                 |
| BEATHUR KEMMAN              | 1                      | č.                     |              |                                 |                                               |                                              | ****            |
| Нононий кампан              | 1                      | 2                      |              |                                 |                                               |                                              |                 |
| Вераний сантон              | 1                      |                        |              |                                 |                                               |                                              | BARE 2000       |
| Нитний сантон               | 8                      | 2                      |              |                                 |                                               |                                              | 8888 1.11 8888  |
| Верлий коньяк               | £ .                    |                        |              |                                 |                                               | 目                                            | B336 ' 3336     |
| Нижний коньяк               | F                      |                        |              |                                 |                                               |                                              |                 |
| Верхний турон               |                        | 2                      |              |                                 |                                               |                                              |                 |
| Средний турон               | FI                     | 2                      |              |                                 |                                               |                                              |                 |
| нижний турон                | 1                      | 2                      |              |                                 |                                               |                                              |                 |
| Верхоний сеноман            |                        | <u> </u>               | Q            | Q                               | Q                                             | <u> </u>                                     | <u> </u>        |
| Среанци сеноман             |                        |                        | <u> </u>     |                                 | L Ø                                           | Q                                            |                 |
| Bearnul ash                 | l                      | 3540.24                | 10.0(2)      |                                 |                                               |                                              |                 |
| Спелний проб                | [                      |                        |              | 2926,9                          | 130,3                                         |                                              |                 |
| Reasenui anm                |                        | 4455,0                 | <u> </u>     |                                 |                                               |                                              | <u> 8000</u>    |
| VA V A 7 6 6 57 A. V 1 4    |                        |                        |              | <u> </u>                        | <u> </u>                                      |                                              | L- K-           |

Рие. 12. Распределение средних скоростей седиментации (I — мм·см<sup>-2</sup> ·год<sup>-1</sup>; II — мг·см<sup>-2</sup> ·10<sup>-3</sup> ·год<sup>-1</sup>) и аккумуляции компонентов (мг · см<sup>-2</sup> ·10<sup>-3</sup> ·год<sup>-1</sup>) СаСО<sub>3</sub>; SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn в разрезе постюрских отложений скв. 464

Eklerfield, 1977], тогда как для металлоносных осадков Восточно-Тихоокеанского поднятия они примерно на порядок выше: Mn — 24—35; Fe — 63—110 [Boström, 1973; Bender et al., 1971].

Однако если принять во внимание рассмотренные выше содержания Mn, Fe, формы их нахождения и природу геохимических ассоциаций, то уместно допустить, что в начальную и заключительную фазы накопления рассматриваемых осадков определенная роль могла принадлежать гидротермальным, эксгаляционным продуктам.

Позднекай нозойский этап (поздний миоцен — плейстоцен), как отмечалось выше, охарактеризован данными фрагментарно. Установленные для раннего и позднего плиоцена скорости накопления глинистых кремнистых илов составляют 7,5—10,5 мм · 10<sup>-3</sup> · год<sup>-1</sup>. Осадки отлагались ниже глубины карбонатной компенсации при ощутимом поступлении базальтоидного (в меньшей мере — кислого) вулканокластического эксплозивного материала с окружающих островов.

Скорости аккумуляции главных компонентов, в частности Mn, не превышают значений, характерных для пелагических областей открытого океана (см. табл. 14 и рис. 12). Несколько повышенные величины получены для Fe (мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>): ранний плиоцен — 19,4, поздний плиоцен — 17,3. Они, по-видимому, связаны с заметной примесью изменений, глубокой окисленной базальтовой вулканокластики. Анализ имеющихся данных по геохимии, минералогии и литологии мезозойских и кайнозойских отложений, вскрытых скв. 464, позволяет выделить три главных этапа в геохимической истории седиментации региона, соответствующих подразделениям, установленным ранее при рассмотрении распределения средних содержаний компонентов и скоростей их аккумуляции.

Позднемезозойский этап: поздний апт-сеноман. Как неоднократно отмечалось выше, осадки, которые накапливались в течение этого этапа, скудно охарактеризованы керновым материалом и соответственно палеонтологическими, аналитическими, минералогическими определениями. При бортовом описании [Initial reports..., 1981] установлено, что в интервалэх номеров керна от 20 до 32 осадки представлены темнокрасными, бурыми известково-кремнистыми илами (известняки, писчий мел, прослои кремней), перемежающимися с существенными количествами глинистых, мергельных осадков (альб). Количество глинистых компонентов возрастает к основанию разреза, достигая (керны 29–32) 70–90% (верхний апт-нижний альб). Характерные образцы этой части разреза (например, обр. 27–1–63–65) представлены известняками: туфогенными, гиалопелитовыми (30%), существенно кремнистыми, радиоляриевыми (20%). Основная масса сложена наннофоссилиевым микритом (30%) и остатками фораминифер (10%), импрегнированных рассеянными гидроокислами Fe (10%).

Выше керна 20 (до керна 11) преобладают известковые, заметно кремнистые отложения, относительно светлоокрашенные (верхний альб—сеноман). Количество вулканогенной примеси и гидроокислов Fe в этих осадках существенно меньше, чем в нижележащих отложениях альба.

Выше отмечалось, что скорости накопления альбских отложений являются максимальными для мезозоя и кайнозоя этого района (мм · 10<sup>-3</sup> · год<sup>-1</sup>): поздний апт ранний альб — 22,5; средний альб—сеноман — 17,9 (см. табл. 14 и рис. 12).

Ограниченное количество образцов извлеченного керна и соответственно химических определений вынуждает с особой осторожностью оперировать конкретными величинами скоростей аккумуляции компонентов. Тем не менее, принимая на основании данных по минералогии и литологии этих осадков допустимые вариации химического состава позднеаптских—раннеальбских и среднеальбских—сеноманских отложений, можно убедиться в относительно высоких темпах накопления SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и других компонентов. Эти данные могут быть интерпретированы как свидетельство того, что в течение альба северный район возвышенности Хесса находился в экваториальной зоне высокой биологической продуктивности при общем направленном к северу движении Тихоокеанской плиты. Несколько сокращенные значения этих скоростей (по сравнению с известными значениями для такой зоны), существенное количество кремнистого материала позволяют сделать вывод о том, что накопление осадков происходило значительно ниже уровня лизоклина, а в отдельные интервалы — ниже глубины карбонатной компенсации.

Чрезвычайный интерес представляют ранние фазы этого этапа. Весьма скудный материал позволяет лишь полагать, что в течение раннего альба значительная роль в общем балансе седиментации принадлежала накоплению вулканокластических материалов — продуктов эксплозивного вулканизма окружающих островов, а в самом основании разреза — металлоносных осадков [initial reports..., 1981].

Позднемеловой (турон-маастрихт?) -среднемиюценовый этап (время накопления вулканокластической серии "бурых глин"). Выше подчеркивалось, что данные изучения остатков ихтиолитов [Doyle, Riedel, 1981] позволяют считать, что 53-метровая серия вулканогенных "бурых глин" охватывает возрастной диапазон от позднего мела (турон?) до среднего (позднего?) миоцена. В нижней части (керны 8–10, поздний мел-палеоцен) наблюдаются частицы песчано-алевритовой размерности бурого базальтового стекла (до 20–40%), гиалопелитового материала, существенно преобразованные в глинистое вещество, выделения гётита, гематита (до 20%), цеолита (до 10–20%), основных плагиоклазов, лабрадор-битовнита (до 5–10%). В базальной части серии турон-маастрихт (обр. 9–4–106–109) встречаются гравийные обломки перекристаллизованных окремнелых известняков. Важно подчеркнуть, что основная масса (до 70–90%) этих осадков слагается гиалопелитовым, гиалоалевритовым базальтовым материалом, глубоко преобразованным в глинистое вещество. Анализ рентгеновских дифрактограмм этих осадков (см. рис. 8) свидетельствует, что основные компоненты представляют собой гамму неупорядоченных тонкодисперсных смешаннослойных фаз монтмориллонит-слюда с переменным содержанием разбухающих (монтмориллонитовых) и неразбухающих (слюдистых) слоев; в качестве примесей присутствуют кварц, гейландит, плагиоклазы типа лабрадор-битовнит. В верхней половине серии (средний миоцен-палеоцен; керны 5-7) общий минеральный состав осадков в целом сохраняется. Однако обращает на себя внимание появление в отдельных интервалах заметных количеств бесцветного стекла кислого-среднего состава (до 10-20%, например, в палеоцене: обр. 7-6-43-46), выделений нанномикрита, опал-кварцевого вещества, относительное сокращение количества гидроокислов Fe (до 10%). По данным рент-геновских дифрактограмм меняется тип цеолита – преобладает филлипсит.

Исследования минерального состава хорошо согласуются с геохимическими выводами, в частности с рассмотренными выше особенностями распределения парагенетических группировок химических компонентов (см. рис. 7 и 9).

Приведенные данные позволяют считать, что серия "бурых глин" представляет собой глубоководное (ниже уровня карбонатной компенсации) накопление относительно тонкозернистых гиалопелитовых вулканокластических материалов базальтового состава, являющихся продуктами эксплозивных извержений относительно близко расположенных островных вулканов. Если принять позднемеловой—средне-позднемиоценовый возраст этой серии, то скорости накопления осадков не превышают величин (0,3– 6 мм · 10<sup>-3</sup> · год<sup>-1</sup> [Безруков, Романкевич, 1970; Arrhenius, 1963, 1967]), характерных для глубоководных красных глин (см. табл. 12 и 14). Сопоставление их минерального состава и геохимических особенностей указывает, что эти два типа осадков существенно различны. В глубоководных красных глинах Тихого океана, по данным Н.С. Скорняковой, содержание (%) Fe составляет 3,28–9,88 (среднее – 5,64), Mn – 0,16–3,00 (среднее – 0,76) [Безруков, Романкевич, 1970]. В рассматриваемых бурых вулканогенных глинах концентрации этих компонентов существенно выше (см. табл. 8, 14, рис. 10, 11).

Несколько повышенные скорости накопления Fe и Mn в начальные и заключительные фазы образования данной серии и состав связанных с ними парагенетических ассоциаций тяжелых металлов (см.рис.7,9,10, табл. 14) дают основание для того, чтобы допустить привнос определенной доли этих компонентов в форме гидротермальных, эксгаляционных продуктов. Следует подчеркнуть, что лишь в верхней половине серии "бурых глин" наблюдается ощутимая примесь биогенных компонентов нормальной океанской седиментации.

Таким образом, при всей фрагментарности имеющихся данных вулканогенная природа относительно глубоководной серии "бурых глин" представляется достаточно определенной. Можно полагать, что эти образования связаны с активизацией некоторых структурных блоков северной части возвышенности Хесса.

Позднекайнозойский этап (поздний миоцен-плейстоцен). В течение этого времени накапливались пелагические глинисто-кремнистые осадки, объединяемые в подсерию IA (глинистые радиоляриевые илы, глинистые кремнистые илы) и IB (кремнистые глины). Эти осадки (серия IB) с перерывом залегают на вулканогенных "бурых глинах" [Initial Reports., 1981].

Главными биогенными компонентами обеих подсерий являются остатки радиолярий, диатомовых, спикул губок, в меньшей мере — карбонатный наннофоссилиевый микрит, присутствующие в переменных пропорциях. Основная масса представлена тонким гиалопелитовым материалом, измененным в глинистое вещество. Характерной примесью являются песчано-алевритовые частицы бурого базальтового (до 5–15%), в меньшей мере — бесцветного кислого, стекла. Отмечается небольшая примесь микроконкреций гидроокислов Mn и Fe.

Для данного интервала характерна тенденция: вверх по разрезу наблюдаются относительное сокращение количества вулканокластических компонентов и, напротив, возрастание содержания кремнистых (в меньшей мере — карбонатных) биогенных остатков.

По данным рентгеноструктурного анализа основная глинистая масса осадков (керны 2-5) представлена двумя главными компонентами, присутствующими примерно в равных пропорциях: а) гидрослюдой, смешаннослойной фазой слюда-монтмориллонит, содержащей небольшое количество (< 10%) разбухающих слоев; б) Mg, Fe-52 хлоритом. В относительно малых количествах содержится весьма тонкодисперсная, плохо окристаллизованная неупорядоченная смешаннослойная фаза монтмориллонитслюда. В примесных количествах встречаются кварц и полевые шпаты.

Химический состав и скорости накопления осадков этого этапа (см. табл. 8–14, рис. 7–12) меняются в сравнительно ограниченных пределах и мало отличны от типичных пелагических глинисто-кремнистых илов открытого океана.

Накопление осадков происходило в условиях, близких к современным, т. е. к условиям северной олиготрофной зоны Тихого океана, при глубинах ниже современного уровня карбонатной компенсации. Наличие незначительной примеси кварца и полевых шпатов в осадках может служить критерием поставки эоловых, терригенных компонентов. Происхождение глинистых компонентов менее очевидно. Они представлены преимущественно гидрослюдистыми и Mg, Fe-хлоритовыми минералами, которые могут рассматриваться как крайние члены в ряду глубокого преобразования гиалопелитового, тонкого вулканокластического материала в морской среде.

...

Таким образом, на основании изучения химического состава мезозойских и кайнозойских осадков, пробуренных скв. 464 в северной части возвышенности Хесса, особенностей распределения химических компонентов в разрезе, форм их нахождения, установленных при помощи факторного анализа и рассматриваемых в контексте с данными по минералогии и литологии, скоростей аккумуляции осадков и химических компонентов в геохимической истории постюрской седиментации района выделяются три главных этапа, на которые приходятся наиболее существенные фазы развития, отражающие общую эволюцию бассейна: начальная (поздний апт-ранний альб) и промежуточная (время нахождения района в экваториальной зоне высокой биологической продуктивности; средний альб-сеноман), составляющие первый этап; затем – фаза локального накопления тонких вулканогенных осадков (поздний мел (турон?) – средний миоцен), составляющая второй этап, и, наконец, фаза открытой океанской седиментации (поздний миоцен-плейстоцен), составляющая последний, третий этап.

## ГЕОХИМИЧЕСКАЯ ИСТОРИЯ ПОСТЮРСКОЙ СЕДИМЕНТАЦИИ В Южном районе возвышенности Хесса, СКВ. 465, 465 А

В данном разделе рассматриваются основные черты геохимической истории седиментации южного района возвышенности Хесса, которые зафиксированы в химическом и минеральном составе осадков, вскрытых скв. 465 и 465А. При их исследовании в Геологическом институте АН СССР были использованы те же методы, что и при исследовании материалов скв. 463 и 464.

Используемые при интерпретации данных химического анализа определения глинистых минералов во фракции < 0,001 мм приводятся по данным П.П. Тимофеева, М.А. Ратеева и В.И. Копорулина [Проблемы литологии..., 1983]. Наряду с этим все химически проанализированные образцы были изучены при помощи дифрактометрии с полагающимися обработками для выявления их общего фазового состава (природные препараты).

# ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ КОМПОНЕНТОВ

Как и в предыдущих случаях, в основу выделения парагенетических ассоциаций химических компонентов положены результаты обработки по методу факторного анализа как собственно данных химического анализа, представленных в весовых процентах, пересчитанных на воздушно-сухую навеску, так и результатов пересчета этих данных на БТККВ. Выявленные парагенетические группировки интерпретировались в общем контексте данных по минералогии и литологии осадков, возможных геохимических условий их формирования.

# Ассоциации, выявляемые на основе данных химического анализа (табл. 15-17; рис. 13)

Ассоциация IA (+): SiO<sub>2</sub> (0,39), Al<sub>2</sub>O<sub>3</sub> (0,59), MgO (0,55), C<sub>opr</sub> (0,75), Fe (0,12), P (0,49), Cr (0,48), Ni (0,60), V (0,90), Cu (0,81), Mo (0,87). Эта ассоциация представлена алюмосиликатными компонентами, присутствующими в форме базальтовой вулканокластики, в значительной мере измененной в монтмориллонит-иллитовые минералы. Для ассоциации характерно наличие тесно связанных  $C_{opr}$ , P и ряда тяжелых металлов: Cr, Ni, V, Cu, Mo.

Распространение рассматриваемой группировки компонентов весьма четко ограничено в разрезе (см. рис. 13) слоистыми известняками позднего альба—раннего сеномана, существенно обогащенными базальтовой вулканокластикой и рассеянным сапропелевидным органическим веществом.

Ассоциация IB (--): СаО (--0,23), Na<sub>2</sub>O (--0,77), CO<sub>2</sub> (--0,17). Она представлена карбонатом кальция, присутствующим в форме неконсолидированных биогенных остатков: наннофоссилий, фораминифер, микрита. Как правило, с таким почти неизмененным карбонатом кальция тесно связан Na, заимствуемый из морской воды. Обращает на себя внимание четкая стратиграфическая локализация этой группировки в разрезе (см. рис. 13): наннопланктонные илы и фораминиферово-наннопланктонные илы позднего кампана-плейстоцена.

#### Таблица 15

Химический состав отложений мезозоя и кайнозоя скв. 465 и 465А (вес.% в пересчете на воздушно-сухую навеску)

|                  | T                |                                | T                              |       |      | r    |                   |      |            |  |
|------------------|------------------|--------------------------------|--------------------------------|-------|------|------|-------------------|------|------------|--|
| № обр.           | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | ۴e <sub>2</sub> O <sub>3</sub> | CaÓ   | MgO  | MnO  | Na <sub>2</sub> O | К₂О  | CO2        |  |
| 2-1-108-110      | +  <br>5,75      | 1,57                           | 0,74                           | 49,46 | 0,42 | 0,01 | 1,28              | 0,51 | 1<br>38,95 |  |
| 3-2-110-112      | 0,44             | 0,01                           | 0,15                           | 54,84 | 0,41 | 0,02 | 1,08              | 0,15 | 41,75      |  |
| 42-10-12         | 0,26             | 0,05                           | 0,06                           | 54,92 | 0,42 | 0,01 | 1,08              | 0,15 | 43,45      |  |
| 5-2-70-72        | 1,45             | 0,16                           | 0,06                           | 53,78 | 0,22 | 0,06 | 1,35              | 0,20 | 41,35      |  |
| 1-1-104-106 (A)  | 2,52             | 0,10                           | 0,20                           | 52,51 | 0,07 | 0,04 | 1,45              | 0,31 | 40,60      |  |
| 6-2-98-100       | 0,57             | 0,05                           | 0,19                           | 54,07 | Нет  | 0,04 | 1,27              | 0,25 | 42,35      |  |
| 3-1-118-120 (A)  | 0,72             | 0,10                           | 0,20                           | 52,84 | "    | 0,02 | 0,54              | 0,25 | 42,30      |  |
| 10 <b>59395</b>  | 2,61             | 0,16                           | 0,20                           | 52,64 | 0,09 | 0,01 | 1,18              | 0,25 | 40,55      |  |
| 9-4-105-107 (A)  | 0,06             | 0,05                           | 0,07                           | 53,88 | Нет  | 0,01 | 1,64              | 0,20 | 42,20      |  |
| 10-16468 (A)     | Нет              | Нет                            | 0,35                           | 53,96 | "    | 0,01 | 1,45              | 0,83 | 42,35      |  |
| 11-1-26-30 (A)   | 0,91             | 0,02                           | 0,20                           | 52,74 | "    | 0,02 | 1,45              | 0,83 | 41,80      |  |
| 121-70-74 (A)    | 0,42             | 0,08                           | 0,20                           | 54,39 | "    | 0,01 | 0,77              | 0,14 | 42,85      |  |
| 15-1-120-122 (A) | 0,30             | 0,08                           | 0,20                           | 54,20 | 0,34 | 0.02 | 1,06              | 0.14 | 42,15      |  |
| 16-4-80-82 (A)   | 0,32             | 0,06                           | 0,52                           | 54,21 | 0,17 | 0,02 | 1,06              | 0.09 | 40.25      |  |
| 17—1—140—142 (A) | Нет              | 0,02                           | 0,20                           | 54,18 | 0,52 | 0.02 | 1.06              | 0.09 | 41,55      |  |
| 18-1-136-138 (A) | 0,32             | 0,06                           | 0,13                           | 54,06 | 0.26 | 0.01 | 1.06              | 0.14 | 42,95      |  |
| 19-2-146-148 (A) | 0,70             | 0,01                           | 0,13                           | 53,80 | 0,35 | 0.01 | 1.16              | 0.09 | 41.60      |  |
| 20-1-94-96 (A)   | 0,08             | 0,06                           | 0,13                           | 54,36 | 0.34 | 0.01 | 1.06              | 0.09 | 41.85      |  |
| 26-1-57-58 (A)   | 0,46             | 0,31                           | 0,13                           | 53.87 | 0.44 | 0.01 | 0.53              | 0.15 | 42.45      |  |
| 27-1-76-77 (A)   | 0,66             | 0,04                           | 0.37                           | 53,58 | 0.26 | 0.01 | 0.53              | 0.10 | 41.80      |  |
| 28-1-81-82 (A)   | 3,02             | 0,83                           | 0.35                           | 48,62 | 0.18 | 0.02 | 0.68              | 0.31 | 37.60      |  |
| 29-1-81-82 (A)   | 17,67            | 6,13                           | 3.58                           | 36.70 | 1.23 | 0.05 | 1.52              | 0.61 | 27.10      |  |
| 30-1-70-71 (A)   | 0,54             | 0,12                           | 0.22                           | 54.00 | 0.35 | 0.01 | 0.53              | 0.10 | 42.35      |  |
| 32-1-58-59 (A)   | 0,98             | 0,26                           | 0.13                           | 53.88 | 0.18 | 0.01 | 0.53              | 0.20 | 41.95      |  |
| 33-1-15-16 (A)   | 1,63             | 0,53                           | 0.22                           | 52.71 | 0.35 | 0.01 | 0.60              | 0.15 | 41.25      |  |
| 34-1-41-42 (A)   | 0,62             | 0,28                           | 0.13                           | 54.19 | 0.18 | Нет  | 0.53              | 0.15 | 42.55      |  |
| 36-2-92-93 (A)   | 1,95             | 0,57                           | 0.26                           | 50.76 | 0.44 | 0.01 | 0.60              | 0.25 | 40.00      |  |
| 37-2-74-75 (A) * | 4,36             | 1,31                           | 0,33                           | 46,39 | 0,35 | 0,01 | 0,76              | 0,51 | 35,85      |  |
| 38-1-73-74 (A)   | 3,74             | 0,90                           | 0,33                           | 48,46 | 0,44 | 0,01 | 0,85              | 0,46 | 38,65      |  |
| 39–1–113–114 (A) | 2,24             | 0,56                           | 0,26                           | 50,15 | 0,44 | 0,01 | 0,85              | 0,31 | 39,40      |  |
| 40-2-42-43 (A)   | 2,59             | 0,85                           | 0,55                           | 51,35 | 0,71 | 0,13 | 0,68              | 0,31 | 40,10      |  |

\* Р<sub>2</sub> О<sub>5</sub> определялся в двух порциях обрезца.

*дссоциация* IIA (+): SiO<sub>2</sub> (0,65), Al<sub>2</sub>O<sub>3</sub> (0,60), Na<sub>2</sub>O (0,32), K<sub>2</sub>O (0,74), Fe (0,73), Mn (0,41), P (0,63), Ni (0,40), V (0,30), Cu (0,17), Ga (0,32), Mo (0,28). Это — алюмосиликатная фаза, представленная преимущественно смешаннослойными образованиями типа монтмориллонит-иллит, с которыми тесно связаны P и набор тяжелых метаплов: Ni, V, Ga, Mo.

Преимущественное развитие этой ассоциации среди слоистых известняков позднего альба (обр. 29–1–81–82, 37–2–74–75), существенно обогащенных тонкой базальтовой вулканокластикой, можно интерпретировать как свидетельство о том, что рассматриваемая группа компонентов представляет собой продукты изменения (гидрослюдизации, смектитизации) вулканогенных компонентов.

Ассоциация IIB (—): CaO (—0,91), CO<sub>2</sub> (—0,88), C<sub>орг</sub> (—0,18), Co (—0,52). Она представлена карбонатом кальция, с которым не очень сильно связаны  $C_{opr}$  и Co.

Ассоциация развита главным образом в нижней части серии I (ниже обр. 9—4—105— 107; глубина 120,55 м) и среди пород серии II (слоистые известняки, см. рис. 13).

Изучение шлифов под микроскопом и сопоставление с ассоциацией IB (—) позволяют считать, что рассматриваемая группировка представлена преимущественно продуктами перекристаллизации исходного биогенного карбоната кальция в ходе его эпигенетического преобразования. Этот вывод согласуется с данными бортовых определений плотности [см. Initial Reports..., 1981]: для серии і ниже керна 10 (134—

| · c     | P.O   | Fe    | Mn   | Ρ      |      |      |      |        | <i>n</i> · 10 | )-4  |            |       |       |
|---------|-------|-------|------|--------|------|------|------|--------|---------------|------|------------|-------|-------|
| •       | . 203 | ' Ban | вал  | 'ВАЛ   | Cr   | Ni   | V    | Cu     | Co            | РЬ   | Ga         | Ge    | Мо    |
| <br>Нат | 0.07  | 0.52  | 0.01 | 0.03   | < 10 | ~ 10 | / 15 | ~ 15   | < 10          | < 10 |            | ~ 1   | - 1 E |
| "       | 0.07  | 0,02  | 0.01 | 0,03   | < 10 | 2 10 | < 15 | < 15   |               |      | > 9<br>> 6 |       | < 1.5 |
| "       | 0.05  | 0.04  | 0.01 | 0,00   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 |            | 21    | < 1.5 |
| "       | 0.14  | 0.04  | 0.05 | 0.06   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 |            | 21    | < 1.5 |
| "       | 0.10  | 0.14  | 0.03 | 0.04   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | ~ 1   | < 15  |
| **      | 0,09  | 0.13  | 0.03 | 0.04   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < i   | < 1.5 |
| "       | 0,10  | 0.14  | 0,02 | 0.04   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < 1   | < 1.5 |
|         | 0,03  | 0,14  | 0,01 | 0.01   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < 1   | < 1.5 |
| "       | 0,004 | 0,05  | 0,01 | 0,002  | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < 1   | < 1.5 |
|         | 0,004 | 0,24  | 0,01 | 0,002  | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < 1   | < 1.5 |
| ••      | 0,03  | 0,14  | 0,02 | 0,01   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < 1   | < 1.5 |
|         | Нет   | 0,14  | 0,01 | Нет    | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < 1   | < 1,5 |
| **      | 0,04  | 0,14  | 0,02 | 0,02   | < 10 | < 10 | < 15 | 5 < 15 | < 10          | < 10 | < 5        | < 1   | < 1,5 |
| "       | 0,02  | 0,36  | 0,02 | 0,01   | < 10 | < 10 | < 15 | < 15   | < 10          | < 10 | < 5        | < 1   | < 1.5 |
| "       | Нет   | 0,14  | 0,02 | Нет    | < 10 | < 10 | < 15 | < 20   | < 10          | < 10 | < 5        | < 1   | < 1,5 |
| **      | 0,02  | 0,09  | 0,01 | 0,01   | < 10 | < 10 | < 15 | < 20   | < 10          | < 10 | < 5        | < 1   | < 1,5 |
| ,,      | 0,03  | 0,09  | 0,01 | 0,01   | < 10 | < 10 | < 15 | < 20   | < 10          | < 10 | < 5        | < 1   | < 1,5 |
|         | 0,03  | 0,09  | 0,01 | 0,01   | < 10 | < 10 | < 15 | < 20   | < 10          | < 10 | < 5        | < 1   | < 1,5 |
| 0,88    | 0,04  | 0,09  | 0,01 | 0,02   | 10   | < 10 | 49   | < 20   | < 10          | < 10 | < 5        | < 1   | 2,8   |
| 0,83    | 0,08  | 0,26  | 0,01 | 0,03   | 11   | 11   | 35   | < 20   | < 10          | < 10 | < 5        | s < 1 | 2,8   |
| 1,93    | 0,14  | 0,24  | 0,02 | 0,06   | 15   | 12   | 72   | < 20   | < 10          | < 10 | < 5        | < 1   | 3,7   |
| 0,03    | 0,73  | 2,50  | 0,04 | 0,32   | < 10 | < 10 | 41   | < 20   | < 10          | < 10 | < 5        | < 1   | 2,1   |
| 0,71    | 0,04  | 0,15  | 0,01 | 0,02   | < 10 | < 10 | 56   | < 20   | < 10          | < 10 | < 5        | < 1   | 2,1   |
| 0,57    | 0,03  | 0,09  | 0,01 | 0,01   | < 10 | < 10 | 59   | < 20   | < 10          | < 10 | < 5        | < 1   | 3,1   |
| 1,15    | 0,07  | 0,15  | 0,01 | 0,03   | < 10 | < 10 | 66   | < 20   | < 10          | < 10 | < 5        | < 1   | 4,3   |
| 0,05    | 0,06  | 0,09  | Нет  | 0,03   | < 10 | < 10 | 58   | < 20   | < 10          | < 10 | < 5        | < 1   | 5,1   |
| 1,12    | 0,18  | 0,18  | 0,01 | 0,08   | < 10 | 20   | 26   | 0 < 20 | < 10          | < 10 | < 5        | < 1   | 9,9   |
| Het     | 0,25  | 0,23  | 0,01 | 0,11   | 13   | 49   | > 50 | 0 30   | < 10          | < 10 | < 5        | < 1   | 16,2  |
|         | 0.20  | 0.22  | 0.01 | (0,14) |      | ~    |      |        |               |      |            |       |       |
| 2 42    | 0,30  | 0,23  | 0,01 | 0,13   | < 10 | 36   | 28   |        | < 10          | < 10 | < 5        | < 1   | 16    |
| 2,42    | 0,23  | 0,18  | 0,01 | 0,10   | < 10 | 15   | 21   | U < 20 | < 10          | < 10 | < 5        | < 1   | 7,3   |
| 0,54    | 0,10  | 0,36  | 0,10 | 0,04   | < 10 | < 10 | 15   | 5 < 20 | < 10          | < 10 | < 5        | < 1   | 5,8   |

| _           |                                 | _                | ť 1           | Aumo.                             | RUSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - H                              |                    |
|-------------|---------------------------------|------------------|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|
| Cmp<br>nu   | ратиграфические<br>одразделения | Серия<br>(керны) | พ<br>อหกฎกับเ | общая                             | gohcad<br>-go zieu<br>-negod<br>-nego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Глинист<br>компоне:<br>ты        | № <i>обр</i> .     |
|             | Плейстоцен                      |                  |               | <u> </u>                          | ŢŢŢŢ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =_=_=                            | 2-1-108-110        |
| 5           |                                 |                  |               |                                   | ╎╌╸╌╴╴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [=]=]=                           | 3-2-110-112        |
| 20          | Вепхний                         |                  |               | ╵╸╵┷╹┷                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ╏╴╴╴╴╴                           | 4-2-10-12          |
| ġ.          | палеоцен                        | 3                |               | ┷╷┷╻▲                             | Ĩ⊥ a⁴ a∸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ╞_╕╕_╕                           | 5-2-70-72          |
| 3           | . ,                             | 52               |               |                                   | <u>÷</u> ▲÷ـ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ╞ <u></u> ]=]=]                  | 1-1-104-106 (A)    |
| $\varkappa$ | Harrison                        | 1                | •             |                                   | <u> </u> ┿╦┿┷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ╞╴╴╴╴                            | 6-2-98-100         |
|             | Паляний палеоцен                | _≤_              |               | ╞╗╗                               | lite de la compañsión de | = = =                            | 3-1-118-120 (A)    |
|             | асрэсниц маастриз               | <i>‴</i> `       | പ്പ           | ┟┷╧┷╧┷                            | 内公式文                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>, ^</u> _ ^ _                 | 10-5-93-95         |
|             | Humani                          | 17               | Ĩ.            | IA <sup>_</sup> →⊥ <sup>→</sup> ⊥ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - x - x                          | 9-4-105-107 (A)    |
|             | Maacmouscin                     | ΙΞ               | L I           | ┢╧┰╧┶                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x - x -                          | 11 1 26 20 (A)     |
|             |                                 | <b>H</b>         | 0             | ┢┶ヹ┶┶                             | K. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - × - ×                          | 12 1. 70 74 (A)    |
|             |                                 |                  |               | ▲ ▲ ▲                             | <u>محمحة</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | × - × -                          | 15-1-120 - 122 (A) |
|             |                                 |                  |               | [                                 | 두구소구                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x - x -                          | 16.4-80_82 (A)     |
| 1           | Верхний                         |                  |               |                                   | <u> ↓</u> ŢĻ_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - × - ×                          | 17-1-140-142 (A)   |
| 5           | кампан                          |                  |               | <u>╎</u> ┶╸┷╴                     | <u> </u> ▲▲▲▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × - × -                          | 18-1-136-138 (A)   |
|             |                                 |                  | Į –           | ★⊥≜ ☆                             | ĬŢ <u>ŢŢ</u> ĿŶ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 19-2-146-148 (A)   |
| 0           |                                 |                  |               | ┢ᡱᡱᠴ≜                             | tere ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 20-1-94-96 (A)     |
| 5           | Нижний                          |                  |               | 1.4.1.                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -X-X-X                           | 26-1-57-58 (A)     |
| 0           | Сеноман                         |                  |               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K-X-X-X                          | 27-1-76-77 (A)     |
| 12          |                                 | 1 -              |               |                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KXXXX                            | 28-1-81-82 (A)     |
| 2           |                                 | 8                |               |                                   | ┆╦┋╤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 29-1-81-82 (A)     |
| ₹           |                                 | 4                | 12            |                                   | 수도수                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>KXX</u>                       | 30-1-70-71 (A)     |
| 1           | Верхний                         | ×.               | 4             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbb{K}\mathbb{X}\mathbb{X}$ | 32-1-58-59 (A)     |
|             | альб                            | 26               |               |                                   | 気上が                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbb{X}$                     | 33-1-15-16 (A)     |
|             |                                 | i iii            | 6             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KXX                              | 34-1-41-42 (A)     |
|             | Į                               |                  | 5             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{x}$                     | 36-2-92-93 (A).    |
|             |                                 |                  |               | ╞┼╌╋┶╴                            | 그러관                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\overline{X}$                   | 37-2-74-75 (A)     |
| 1           |                                 | 1                |               | ╞╅╍╼╆                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f7777                            | 38-1-73-74 (A)     |
| 1           | I .                             | 1                |               | ╞┿┰┿                              | 22-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 1 39-1-113-114 (A) |
| L           | L                               | سمما             | سما           | يتر أو يا                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>t-x-x-</u> x                  | 1 40-2-42-43 (A)   |
| C           | Базальт                         | $\sim$           | $\sim$        | h                                 | ふんろう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | لشعشرين                          | ,                  |
| -           |                                 | _                |               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                    |



Рис. 13. Стратиграфическое распредаление факторных значений главных парагенетических ассоциаций химических компонентов в разрезе постюрских отложений скв. 465 и 465А

Глинистые компоненты (к рис. 13—14): 7 – полиминеральная ассоциация, представленная иллитом, хлоритом, мапой примесью монтмориллонита; 2 – ассоциация, представленная Fe(AI)-монтмориллонитом с небольшой примесью иллита, хлорита, Fe-монтмориллонита в отдельных проспоях, для которой характерно наличие цеолита (гейландита) и кремнистых выделений, сложенных кристобалитом-тридимитом; 3 – ассоциация, представленная AI-монтмориллонитом с малой примесью иллита, присутствует кварц

Литология - см. на рис. 2

276 м) среднее значение плотности составляет 1,6 ± 0,02 г/см<sup>3</sup>; для серии II (276–411,7 м) – 2,22 г/см<sup>3</sup>, тогда как для более высоких горизонтов (0–135 м) средняя плотность – 1,54 ± 0,04 г/см<sup>3</sup>. Однако процесс перекристаллизации биогенного карбоната носил неравномерный характер (интервал 120,55–134,0 м – зона промежуточных плотностей). Наличие примеси глинистых компонентов, органического вещества оказывало на перекристаллизацию ингибирующее влияние, особенно в нижних частях серии II (см. рис. 13).

Ассоциация IIIA (+): К<sub>2</sub> O (-0,19), Ni (0,38), Pb (0,77). Она представлена гидрослюдистыми, калиевополевошпатовыми компонентами, обогащенными Ni и Pb.

Примечательно, что интервалы выраженного развития этой ассоциации наблюдаются в нижней половине отложений раннего альба (см. рис. 13) и в осадках нижнего маастрихта. Эти отложения характеризуются заметной обогащенностью глинистыми компонентами, развитыми по основной вулканокластике, причем в породах раннего альба максимум содержания базальтоидных вулканокластических компонентов (ас-

| Факторные значения ассоциации |                |                 |                 |                                               |                 |  |  |  |  |  |
|-------------------------------|----------------|-----------------|-----------------|-----------------------------------------------|-----------------|--|--|--|--|--|
| IA(+)                         | IB(-)          | ПА(+)           | []B(-)          | ША(+)                                         | ШB(-)           |  |  |  |  |  |
| 0,5 1,0 1,5 2,0               | Q5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0                               | 0,5 1,0 1,5 2,0 |  |  |  |  |  |
|                               | 28             |                 |                 |                                               |                 |  |  |  |  |  |
|                               |                |                 | *               |                                               |                 |  |  |  |  |  |
|                               |                |                 | 333332          |                                               |                 |  |  |  |  |  |
|                               |                |                 |                 |                                               |                 |  |  |  |  |  |
|                               | 162.252        |                 |                 |                                               |                 |  |  |  |  |  |
|                               | Sec. Startes   |                 | <b></b>         |                                               |                 |  |  |  |  |  |
|                               |                | ×               |                 |                                               |                 |  |  |  |  |  |
|                               |                | <u>I</u>        |                 |                                               |                 |  |  |  |  |  |
|                               | s - 1979 (48)  |                 |                 |                                               |                 |  |  |  |  |  |
|                               | and the        |                 | 8               |                                               |                 |  |  |  |  |  |
|                               | 1 - 2 H. S     |                 |                 |                                               |                 |  |  |  |  |  |
| <u> </u>                      |                |                 |                 | <u>                                      </u> |                 |  |  |  |  |  |
|                               |                |                 |                 |                                               |                 |  |  |  |  |  |
|                               | 5 S            |                 |                 |                                               | <u> </u>        |  |  |  |  |  |
|                               | 2 Q            |                 |                 |                                               |                 |  |  |  |  |  |
|                               |                |                 | 8               |                                               |                 |  |  |  |  |  |
|                               | 56.            |                 |                 | A                                             |                 |  |  |  |  |  |
|                               | <b>.</b>       |                 |                 |                                               |                 |  |  |  |  |  |
|                               |                |                 |                 |                                               | <u> </u>        |  |  |  |  |  |
|                               |                |                 |                 | · ·                                           |                 |  |  |  |  |  |
|                               |                |                 |                 |                                               |                 |  |  |  |  |  |
|                               |                | 3,81            |                 |                                               |                 |  |  |  |  |  |
|                               |                |                 |                 | <u>ki</u>                                     |                 |  |  |  |  |  |
|                               |                |                 |                 |                                               |                 |  |  |  |  |  |
|                               |                |                 | <b>***</b>      |                                               |                 |  |  |  |  |  |
|                               |                | 1               |                 | <u> </u>                                      |                 |  |  |  |  |  |
|                               |                | 1               | L               | <u>N</u>                                      |                 |  |  |  |  |  |
| MIMMA -                       |                |                 |                 |                                               | L               |  |  |  |  |  |
|                               | L              |                 | I               |                                               | L               |  |  |  |  |  |
|                               |                | 8               |                 |                                               | 8               |  |  |  |  |  |
|                               |                |                 |                 |                                               |                 |  |  |  |  |  |



социация IA (+), см. рис. 13) соответствует максимуму рассматриваемой кластерной группировки.

Ассоциация IIIB (--):  $Al_2O_3$  (--0,32), MgO (--0,51), Mn (--0,51), Co (--0,47), Ga (--0,34). Фазовый состав ассоциации недостаточно ясен. Изучение шлифов пород и осадков позволяет считать, что данная группировка компонентов представлена гидроокислами Mn, с которыми ассоциируют аутигенные магнезиальные смектиты и тяжелые металлы (Co, Ga).

Наиболее выраженное развитие данной ассоциации наблюдается близ контакта с

| Таблица 16                                |                        |
|-------------------------------------------|------------------------|
| Результаты факторного анализа (Я-енализа) | химических компонентов |
| отложений мезозоя и кайнозоя с            | кв. 465 и 465А         |

| Konsougut | Фактор<br>вращен | ные нагруз<br>ия | ки после           | Компонент                 | Факторные нагрузки после<br>врещения |            |            |  |
|-----------|------------------|------------------|--------------------|---------------------------|--------------------------------------|------------|------------|--|
| NUMINIE   | Фак-<br>тор I    | Фактор<br>       | <b>Фа</b> ктор<br> |                           | Фак-<br>тор I                        | Фактор<br> | Фактор<br> |  |
| SiO.      | 0,39             | 0,65             |                    | Cr                        | 0,48                                 | 1          |            |  |
| ALO.      | 0,59             | 0,60             | - 0,32             | Ni                        | 0,60                                 | 0,40       | 0,38       |  |
| CaO       | - 0,23           | - 0,91           |                    | V                         | 0,90                                 | 0,30       |            |  |
| MgO       | 0,55             |                  | - 0,51             | Cu                        | 0,81                                 | 0,17       |            |  |
| Na. O     | - 0,77           | 0,32             |                    | Co                        |                                      | - 0,52     | - 0,47     |  |
| К.О       | - 0,07           | 0,74             | 0,19               | РЬ                        |                                      |            | 0,77       |  |
| co.       | - 0,17           | - 0,88           |                    | Ga                        |                                      | 0,32       | - 0,34     |  |
| Cont      | 0,75             | - 0,18           |                    | Mo                        | 0,87                                 | 0,28       |            |  |
| Fe        | 0,12             | 0,73             |                    | Вклад в дис-              | 34.75                                | 17.06      | 9,66       |  |
| Mn        |                  | 0,41             | - 0,51             |                           |                                      |            |            |  |
| Ρ         | 0,49             | 0,63             |                    | Суммарная<br>дисперсия, % | 34,75                                | 51,81      | 61,48      |  |

# Таблица 17

# Стратиграфическое респределение значений фекторов для химических компонентов отложений мезозоя и кайнозоя скв. 465 и 465 А

.

|                             | Стретигрефичес-        | Факторные значения после вращения |           |            |  |  |  |
|-----------------------------|------------------------|-----------------------------------|-----------|------------|--|--|--|
| № обр.                      | кое подразделе-<br>ние | Фактор !                          | Фактор II | Фактор III |  |  |  |
| 2-1-108-110                 | Плейстоцен             | 0,63                              | 0,97      | - 1,34     |  |  |  |
| 3-2-110-112                 | Верхний палеоцен       | - 0,76                            | - 0.27    | - 0.74     |  |  |  |
| 4-2-10-12                   | Тоже                   | - 0,47                            | - 0,86    | - 0,20     |  |  |  |
| 5-2-70-72                   | **                     | - 0,83                            | 0,01      | - 1,68     |  |  |  |
| -1-104-106 (A)              | **                     | - 1,00                            | 0,43      | - 1,23     |  |  |  |
| 32 <del>0</del> 8100        | **                     | - 1,29                            | 0,42      | 0,91       |  |  |  |
| 3—1—118—120 (A)             | Нижний палеоцен        | - 0,71                            | 0,31      | 0,83       |  |  |  |
| 0-5-93-95                   | Верхний маастрихт      | - 0,75                            | 0,10      | 0,03       |  |  |  |
| 9—4—105—107 (A)             | Нижний маастрихт       | - 1,08                            | - 0,64    | 1.23       |  |  |  |
| 10—1—64—68 (A)              | Тоже                   | - 1,37                            | - 0,24    | 1.32       |  |  |  |
| 1-1-26-30 (A)               | ~                      | - 1,50                            | 0,85      | 1,33       |  |  |  |
| 2-170-74 (A)                |                        | - 0,53                            | - 0,58    | 0,78       |  |  |  |
| 5-1-120-122 (A)             | Верхний кампан         | - 0,64                            | - 0,38    | - 1,30     |  |  |  |
| 6-4-80-82 (A)               | То же                  | - 0,75                            | 0,38      | - 0.54     |  |  |  |
| 7-1-140-142 (A)             | **                     | - 0,41                            | - 0,78    | - 0.06     |  |  |  |
| 8-1-136-138 (A)             | **                     | - 0,41                            | - 0.31    | 1.04       |  |  |  |
| 9-2-146-148 (A)             | **                     | - 0,31                            | - 0,67    | 0.12       |  |  |  |
| 20—1 <del>—9</del> 4—96 (A) | **                     | 0.26                              | - 1.02    | - 0:90     |  |  |  |
| 26-1-57-58 (A)              | Нижний сеноман         | 0,96                              | - 0.87    | - 0.23     |  |  |  |
| 27—1 <i>—</i> 76—77 (A)     | То же                  | 0,85                              | - 0.71    | - 0.10     |  |  |  |
| 28-1-81-82 (A)              | Верхний альб           | 1.23                              | 0,65      | - 0.12     |  |  |  |
| 29-1-81-82 (A)              | То же                  | - 0.47                            | 3.81      | - 0.95     |  |  |  |
| 30-1-70-71 (A)              |                        | 0.99                              | -1.12     | 0.29       |  |  |  |
| 32-1-58-59 (A)              | **                     | 0.87                              | - 0.88    | - 0.04     |  |  |  |
| 3-1-15-16 (A)               | **                     | 1.02                              | - 0.55    | - 1.25     |  |  |  |
| 34-1-41-42 (A)              | **                     | 1.19                              | - 1.00    | 0.53       |  |  |  |
| 6-2-92-93 (A)               | **                     | 1.67                              | 0.11      | 0.19       |  |  |  |
| 7-2-74-75 (A)               | **                     | 1.92                              | 1.88      | 2.06       |  |  |  |
| 8-1-73-74 (A)               | **                     | 1.36                              | 1.12      | 0.87       |  |  |  |
| 9-1-113-114 (A)             | **                     | 1.38                              | 0.14      | -0.13      |  |  |  |
| 0-2-42-43 (A)               | **                     | 0.72                              | 0.45      | - 2 20     |  |  |  |

базальтами, на границе серий II и III, где имеет место значительное эксгаляционногидротермальное воздействие (обр. 40—2—42—43А). На других уровнях разреза эта группировка представляет собой продукты глубокого изменения базальтовой вулканокластики (см. рис. 13).

# Ассоциации, выявляемые на основе данных химического анализа, пересчитанных на БТККВ (табл. 18—20; рис. 14)

Ассоциация IA (+): CaO (0,24), Fe (0,30), Mn (0,13). Данная группировка представлена избыточными количествами извести и Fe, в меньшей мере — Mn. Наиболее значимые величины факторных нагрузок этой ассоциации соответствуют аналогичным параметрам рассмотренной выше ассоциации IIA (+) (см. рис. 13), что позволяет интерпретировать такой набор компонентов как свидетельство о наличии специфичной кальциево-железистой смектитовой фазы — продукта изменения базальтовой вулканокластики. Подобное толкование не противоречит имеющимся данным по минералогии.

Ассоциация IB (–): Na<sub>2</sub> O (–0,41), K<sub>2</sub> O (–0,80), Cr (–0,90), Ni (–0,89), V (–0,78), Cu (–0,96), Co (–0,89), Pb (–0,89), Ga (–0,94), Ge (–0,80), Mo (–0,67). Данная группировка компонентов является кластером-антагонистом, проявляющимся как разбавитель в общем парагенетическом наборе с ассоциацией IA (+). Если считать, что обе ассоциации представлены смешаннослойными образованиями монтмориллонитгидрослюда (см. также ассоциацию IIA (+) на рис. 13), то группировка компонентов

| № обр.                        | CaO    | MgO    | Na <sub>2</sub> O | κ,20   | Fе <sub>вал</sub> | Мп <sub>вал</sub> | Рвал  | Cr    |
|-------------------------------|--------|--------|-------------------|--------|-------------------|-------------------|-------|-------|
| 2-1-108-110                   | Нет    | 13,182 | 65,316            | 15,775 | 4,214             | Нет               | 1,297 | 0,011 |
| 3-2-110-112                   | 47,695 | 11,997 | 31,665            | 4,371  | 2,875             | 0,292             | 0,879 | 0,029 |
| 4-2-10-12                     | Нет    | 8,645  | 77,661            | 10,302 | Нет               | Нет               | 2,867 | 0,070 |
| 5-2-70-72                     | 36,219 | 6,975  | 46,371            | 6,146  | 0,449             | 1,554             | 2,051 | 0,031 |
| 1-1-104-106 (A)               | 27,132 | 2,149  | 52,662            | 10,780 | 4,480             | 1,082             | 1,442 | 0,035 |
| 6-2-98-100                    | 4,682  | Нет    | 70,671            | 13,543 | 6,800             | 1,661             | 2,218 | 0,054 |
| 3-1-118-120 (A)               | Нет    | "      | 65,437            | 28,812 | Нет               | Нет               | 4,835 | 0,116 |
| 10 <b></b> 5 <del>9</del> 395 | 36,532 | 2,834  | 46,177            | 8,976  | 4,448             | 0,374             | 0,370 | 0,035 |
| 9-4-1.05-107 (A)              | 4,299  | Нет    | 82,843            | 9,761  | 2,124             | 0,496             | 0,091 | 0,049 |
| 10—1 <i>—</i> 64—68 (A)       | Нет    | "      | 57,454            | 32,888 | 9,272             | Нет               | 0,079 | 0,040 |
| 11-1-26-30 (A)                | ••     | **     | 63,176            | 36,057 | Нет               | .,                | 0,432 | 0,043 |
| 12-1-70-74 (A)                | **     | ••     | 84,869            | 14,293 | ••                | **                | Нет   | 0,106 |
| 15-1-120-122 (A)              | 21,552 | 15,374 | 40,049            | 5,992  | 5,852             | 0,915             | 0,915 | 0,045 |
| 16-4-80-82 (A)                | 63,176 | 3,553  | 23,042            | 1,788  | 7,630             | 0,432             | 0,214 | 0,021 |
| 17-1-140-142 (A)              | 39,992 | 16,994 | 34,743            | 2,854  | 4,495             | 0,653             | Нет   | 0,032 |
| 18-1-136-138 (A)              | Нет    | Нет    | 87,580            | 10,937 | Нет               | Нет               | 0,812 | 0,080 |
| 19-2-146-148 (A)              | 31,195 | 14,012 | 46,556            | 3,573  | 3,533             | 0,400             | 0,400 | 0,040 |
| 20—1 <i>—</i> 94—96 (A)       | 39,001 | 12,859 | 40,816            | 3,166  | 3,089             | 0,378             | 0,378 | 0,037 |
| 26–1 <i>–</i> 57–58 (A)       | Нет    | 32,048 | 53,690            | 11,133 | Нет               | Нет               | 1,977 | 0,083 |
| 27-1-76-77 (A)                | 20,092 | 17,319 | 35,719            | 6,359  | 17,116            | 0,670             | 2,016 | 0,073 |
| 28-1-81-82 (A)                | 33,011 | 5,241  | 38,734            | 11,747 | 6,024             | 1,024             | 3,434 | 0,066 |
| 29-1-81-82 (A)                | 22,958 | 11,727 | 26,867            | Нет    | 31,618            | 0,410             | 6,393 | Нет   |
| 3017071 (A)                   | 0,179  | 30,139 | 46,953            | 7,423  | 11,626            | 0,859             | 1,744 | 0,080 |
| 32-1-58-59 (A)                | 28,681 | 11,833 | 40,592            | 12,852 | 3,605             | 0,705             | 0,705 | 0,070 |
| 33–1 <i>–</i> 15–16 (A)       | 3,666  | 26,668 | 52,785            | 6,965  | 5,498             | 0,733             | 2,566 | 0,064 |
| 34—1—41—42 (A)                | Нет    | 18,142 | 62,949            | 13,515 | 0,365             | Нет               | 3,531 | 0,110 |
| 36-2-92-93 (A)                | **     | 14,655 | 57,224            | 17,048 | Нет               | "                 | 7,776 | 0,070 |
| 372-74-75 (A)                 | 24,728 | 10,819 | 37,359            | 17,480 | 0,480             | 0,320             | 5,596 | 0,032 |
| 38-1-73-74 (A)                | Нет    | Нет    | 61,903            | 25,634 | Нет               | Нет               | 9,641 | 0,038 |
| 39-1-113-114 (A)              |        | 23,736 | 51,942            | 14,607 | 1,826             | ••                | 6,170 | 0.044 |
| 40-2-42-43 (A)                | 4,614  | 31,886 | 33,286            | 9,955  | 12,236            | 5,029             | 1,918 | 0,031 |
|                               |        |        |                   |        |                   |                   |       |       |

Таблица 18 Химический состав отложений мезозол и кайнозолскв. 465 и 465А (вес.% в пересчете на БТККВ)

# Таблица 18 (окончание)

| № обр.                  | Ni                | v     | Cu    | Co    | Pb    | Ga    | Ge    | Мо    |
|-------------------------|-------------------|-------|-------|-------|-------|-------|-------|-------|
| 2-1-108-110             | 0,011             | 0,027 | 0,054 | 0,043 | 0,043 | 0,016 | 0,004 | 0,007 |
| 3-2-110-112             | 0,029             | 0,044 | 0,044 | 0,029 | 0,029 | 0,015 | 0,003 | 0,004 |
| 4-2-10-12               | 0,071             | 0,081 | 0,107 | 0,072 | 0,072 | 0,035 | 0,007 | 0,011 |
| 5-2-70-72               | 0,031             | 0,048 | 0,034 | 0,034 | 0,034 | 0,017 | 0,003 | 0,005 |
| 1-1-104-106 (A)         | 0,035             | 0,052 | 0,053 | 0,036 | 0,036 | 0,017 | 0,004 | 0,005 |
| 6-2-98-100              | 0,055             | 0,082 | 0,083 | 0,055 | 0,055 | 0,027 | 0,006 | 0,008 |
| 3-1-118-120 (A)         | 0,116             | 0,175 | 0,179 | 0,121 | 0,121 | 0,059 | 0,012 | 0,018 |
| 10—5—93 <b>—95</b>      | 0,035             | 0,055 | 0,057 | 0,039 | 0,039 | 0,019 | 0,004 | 0,006 |
| 9-4-105-107 (A)         | 0,050             | 0,074 | 0,075 | 0,050 | 0,050 | 0,025 | 0,005 | 0,008 |
| 10–1–6 <b>4–68 (</b> A) | 0,040             | 0,059 | 0,059 | 0,040 | 0,040 | 0,020 | 0,004 | 0,006 |
| 11-1-26-30 (A)          | 0,043             | 0,065 | 0,065 | 0,043 | 0,043 | 0,022 | 0,004 | 0,007 |
| 12—1—70—74 (A)          | 0,106             | 0,161 | 0,164 | 0,110 | 0,110 | 0,054 | 0,011 | 0,017 |
| 15—1—120—122 (A)        | 0,045             | 0,067 | 0,068 | 0,046 | 0,046 | 0,023 | 0,005 | 0,007 |
| 16-4-80-82 (A)          | 0,021             | 0,032 | 0,032 | 0,022 | 0,022 | 0,011 | 0,002 | 0,003 |
| 17—1—140—142 (A)        | 0,032             | 0,049 | 0,065 | 0,033 | 0,033 | 0,016 | 0,003 | 0,005 |
| 18—1—136—138 (A)        | 0,080             | 0,121 | 0,164 | 0,082 | 0,082 | 0,041 | 0,008 | 0,012 |
| 19—2—146—148 (A)        | 0,040             | 0,060 | 0,080 | 0,040 | 0,040 | 0,020 | 0,004 | 0,006 |
| 20—1—94—96 (A)          | 0,037             | 0,056 | 0,076 | 0,038 | 0,038 | 0,019 | 0,004 | 0,006 |
| 26—1—57—58 (A)          | 0,094             | 0,489 | 0,198 | 0,101 | 0,101 | 0,047 | 0,010 | 0,029 |
| 27—1—76—77 (A)          | 0,073             | 0,235 | 0,135 | 0,067 | 0,067 | 0,033 | 0,007 | 0,019 |
| 28—1—81—82 (A)          | 0,048             | 0,404 | 0,108 | 0,054 | 0,054 | 0,024 | 0,005 | 0,022 |
| 29—1—81—82 (A)          | Нет               | 0,002 | 0,004 | 0,009 | 0,009 | Нет   | Нет   | 0,002 |
| 30—1—70—71 (A)          | 0,080             | 0,492 | 0,176 | 0,089 | 0,089 | 0,043 | 0,009 | 0,019 |
| 32—1—58—59 (A)          | 0,070             | 0,447 | 0,149 | 0,076 | 0,076 | 0,036 | 0,078 | 0,024 |
| 33—1 <i>—</i> 15—16 (A) | 0,064             | 0,577 | 0,165 | 0,082 | 0,082 | 0,037 | 0,008 | 0,038 |
| 34—1—41—42 (A)          | 0,110             | 0,682 | 0,231 | 0,188 | 0,118 | 0,056 | 0,012 | 0,062 |
| 36—2—92—93 (A)          | 0,169             | 2,552 | 0,179 | 0,090 | 0,090 | 0,040 | 0,009 | 0,098 |
| 37–2–74–75 (A)          | 0,22 <del>9</del> | 2,617 | 0,139 | 0,048 | 0,048 | 0,016 | 0,005 | 0,086 |
| 38—1—73—74 (A)          | 0,260             | 2,097 | 0,130 | 0,069 | 0,069 | 0,031 | 0,007 | 0,122 |
| 39-1-113-114 (A)        | 0,076             | 1,297 | 0,113 | 0,057 | 0,057 | 0,025 | 0,006 | 0,045 |
| 402-42-43 (A)           | 0,076             | 0,773 | 0,093 | 0,047 | 0,057 | 0,021 | 0,005 | 0,030 |
|                         |                   |       |       |       |       |       |       |       |

# Таблица 19 Результаты факторного анализа (*Я*-анализа) химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 465 и 465 А

| Компонент | Факторн<br>вращени | ные нагрузн<br>ня | ки после      | Kaunaua         | Факторные нагрузки после<br>вращения |              |            |  |
|-----------|--------------------|-------------------|---------------|-----------------|--------------------------------------|--------------|------------|--|
|           | Фак-<br>тор I      | Фактор<br> ]      | Фактор<br>III | KOMIIOHeHT      | Фак-<br>тор I                        | Фактор<br>II | Фактор<br> |  |
| CaO       | 0,24               | 0,91              | - 0,16        | Cu              | - 0,96                               |              | 1          |  |
| MgO       |                    | 0,62              | 0,49          | Co              | - 0,89                               | - 0,36       |            |  |
| Na, O     | - 0,41             | - 0,73            |               | РЬ              | - 0,89                               | - 0,36       |            |  |
| к.о       | - 0,80             |                   |               | Ga              | - 0,94                               |              |            |  |
| Fe        | 0,30               | 0,80              |               | Ge              | - 0,80                               |              |            |  |
| Mn        | 0,13               | 0,92              | - 0,14        | Мо              | 0,67                                 | - 0,20       | 0,63       |  |
| P         |                    | - 0,04            | 0,82          | Вклад в диспер- | 58.25                                | 15.56        | 9.82       |  |
| Cr        | - 0,94             |                   | - 0,16        | сию, %          |                                      | ,            | •,         |  |
| Ni        | - 0,89             |                   |               | Суммарная дис-  | 58.25                                | 73.81        | 83.63      |  |
| v         | - 0,78             | 0,05              | 0,53          | персия, %       | 30,20                                |              |            |  |

## Таблица 20

## Стратиграфическое распределение значений факторов для химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 465 и 465 А

| № обр.                           | Стратиграфичес-   | Факторные значения после вращения |           |            |  |  |  |
|----------------------------------|-------------------|-----------------------------------|-----------|------------|--|--|--|
|                                  | кое подразделение | Фактор I                          | Фактор II | Фактор III |  |  |  |
| 2-1-108-110                      | Плейстоцен        | 1,08                              | 1,00      | 0,18       |  |  |  |
| 32-110-112                       | Верхний палеоцен  | 0,68                              | 0,78      | - 0,22     |  |  |  |
| 4-2-10-12                        | То же             | - 0,02                            | 1,32      | 0,26       |  |  |  |
| 5-2-70-72                        | **                | 0,60                              | 0,52      | - 0,23     |  |  |  |
| -1-104-106 (A)                   | **                | 0,33                              | 0,58      | - 0,52     |  |  |  |
| 5-2-98-100                       | **                | - 0,23                            | 0,15      | - 0,99     |  |  |  |
| 3-1-118-120 (A)                  | Нижний палеоцен   | - 0,76                            | - 1,46    | - 0,12     |  |  |  |
| 0-5-93-95                        | Верхний маастрихт | 0,24                              | 0,63      | - 0,67     |  |  |  |
| -4-105-107 (A)                   | Нижний маастрихт  | - 0,12                            | - 0,11    | 1,68       |  |  |  |
| 0-1-64-68 (A)                    | Тоже              | 0,47                              | - 0,99    | - 1,27     |  |  |  |
| 1-1-26-30 (A)                    | **                | 0,57                              | - 1,69    | - 0,75     |  |  |  |
| 2-1-70-74 (A)                    | **                | - 0,91                            | - 1.41    | - 2,12     |  |  |  |
| 15–1–120–122 (A)                 | Верхний кампан    | - 0,02                            | 0,79      | - 0,37     |  |  |  |
| 6-4-80-82 (A)                    | Тоже              | 1,11                              | 0,95      | - 0,47     |  |  |  |
| 7-1-140-142 (A)                  |                   | 0.23                              | 1,06      | - 1,74     |  |  |  |
| 18-1-136-138 (A)                 | <i></i>           | - 0,27                            | - 1,70    | - 0,63     |  |  |  |
| 19-2-146-148 (A)                 | **                | 0,17                              | 0,71      | 0,49       |  |  |  |
| 20—1 <i>—</i> 94—96 (A)          | "                 | 0,24                              | 0,77      | - 0,43     |  |  |  |
| 26–1 <i>–</i> 57 <i>–</i> 58 (A) | Нижний сеноман    | - 0,65                            | 0,86      | 0,91       |  |  |  |
| 27—1 <i>—</i> 76—77 (A)          | То же             | - 0,69                            | 1,18      | 0,29       |  |  |  |
| 28—1—81—82 (A)                   | Верхний альб      | - 0,43                            | 1,02      | 0,45       |  |  |  |
| 2918182 (A)                      | Тоже              | 4,36                              | - 0,07    | 1,32       |  |  |  |
| 30—1—70—71 (A)                   | **                | - 0,96                            | 0,83      | 0,33       |  |  |  |
| 3215859 (A)                      | **                | - 1,32                            | 1,28      | 0,08       |  |  |  |
| 33—1 —15—16 (A)                  |                   | - 0,85                            | 0,82      | 0,61       |  |  |  |
| 34—1 <i>—</i> 41 <i>—</i> 42 (A) |                   | - 1,02                            | - 0,53    | 1,03       |  |  |  |
| 36–2–92–93 (A)                   | ••                | - 0,69                            | - 0,93    | 1,82       |  |  |  |
| 37–2–74–75 (A)                   | **                | - 0,49                            | 0,81      | 1,62       |  |  |  |
| 38—1—73—74 (A)                   | **                | - 0,31                            | - 1,52    | 1,40       |  |  |  |
| 39–1–113–114 (A)                 | **                | 0,10                              | 0,50      | 1,55       |  |  |  |
| 40-2-42-43 (A)                   | **                | - 0,21                            | 1,21      | 0,85       |  |  |  |

IB (-) (см. рис. 14) отражает распространение в разрезе собственно гидрослюдистых пакетов и связанных с этой фазой тяжелых металлов. Преимущественное развитие ассоциации в породах верхнего альба—нижнего сеномана, обогащенных базальтовой вулканокластикой, косвенно свидетельствует о ее эпигенетическом происхождении.

Ассоциация IIA (+): CaO (0,91), MgO (0,62), Fe (0,80), Mn (0,92). Она представлена глубоко измененной базальтовой вулканокластикой и развитыми по ней выделениями, корками, обрастаниями гидроокислов Mn и Fe. Развита эта ассоциация преимущественно в породах верхнего альба—нижнего сеномана и верхнего кампана.

Ассоциация IB (–): Na<sub>2</sub>O (–0,73), Co (–0,36), Pb (–0,36). Рассматриваемая группировка компонентов является кластером-антагонистом относительно ассоциации IIA (+). Можно полагать, что ассоциация IIB (–) представлена относительно обогащенными Na<sub>2</sub>O вулканокластическими компонентами, с которыми довольно умеренно связаны Co и P. Снятие разбавляющего эффекта карбонатных и кремнистых компонентов позволяет выявить относительно равномерное распространение группировок IIA (+) и IIB (–) в разрезе.

Ассоциация IIIA (+): MgO (0,49), P (0,82), V (0,53), Mo (0,63). Она представлена набором избыточных (против принятой нормы) компонентов, распространение которых четко ограничено породами верхнего альба—нижнего сеномана (см. рис. 14). Аналогичное распространение в разрезе, как отмечалось, имеет группировка IA (+)

# Таблица 18 (окончание)

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                  | N⁰ 0.50                 | 1 NI  |       | <b>C</b> 1 |       | 01-   |       | -     |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------|------------|-------|-------|-------|-------|-------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    |                         |       | v     |            |       | P0    | Ga    | Ge    | 11/10 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 2-1-108-110             | 0,011 | 0,027 | 0,054      | 0,043 | 0,043 | 0.016 | 0,004 | 0.007 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                   | 3-2-110-112             | 0,029 | 0,044 | 0,044      | 0,029 | 0,029 | 0,015 | 0,003 | 0,004 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 421012                  | 0,071 | 0,081 | 0,107      | 0,072 | 0,072 | 0.035 | 0.007 | 0.011 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 5-2-70-72               | 0,031 | 0,048 | 0,034      | 0,034 | 0,034 | 0.017 | 0,003 | 0,005 |
|                                                                                                                                                                                                                                                                         | 1-1-104-106 (A)         | 0,035 | 0,052 | 0,053      | 0,036 | 0,036 | 0.017 | 0.004 | 0,005 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 6-2-98-100              | 0,055 | 0,082 | 0,083      | 0,055 | 0,055 | 0,027 | 0,006 | 0,008 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 3-1-118-120 (A)         | 0,116 | 0,175 | 0,179      | 0,121 | 0,121 | 0.059 | 0,012 | 0,018 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 10-5-9395               | 0,035 | 0,055 | 0,057      | 0,039 | 0,039 | 0,019 | 0,004 | 0,006 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                   | 9-4-105-107 (A)         | 0,050 | 0,074 | 0,075      | 0,050 | 0,050 | 0,025 | 0,005 | 0,008 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 10-1-64-68 (A)          | 0,040 | 0,059 | 0,059      | 0,040 | 0,040 | 0,020 | 0,004 | 0,006 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 11-1-26-30 (A)          | 0,043 | 0,065 | 0,065      | 0,043 | 0,043 | 0,022 | 0,004 | 0,007 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 12—1—70—74 (A)          | 0,106 | 0,161 | 0,164      | 0,110 | 0,110 | 0,054 | 0,011 | 0,017 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 15—1—120—122 (A)        | 0,045 | 0,067 | 0,068      | 0,046 | 0,046 | 0,023 | 0,005 | 0,007 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 16-4-80-82 (A)          | 0,021 | 0,032 | 0,032      | 0,022 | 0,022 | 0.011 | 0,002 | 0,003 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 17—1—140—142 (A)        | 0,032 | 0,049 | 0,065      | 0,033 | 0,033 | 0,016 | 0,003 | 0,005 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                   | 18-1-136-138 (A)        | 0,080 | 0,121 | 0,164      | 0,082 | 0,082 | 0.041 | 0,008 | 0,012 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 19-2-146-148 (A)        | 0,040 | 0,060 | 0,080      | 0,040 | 0,040 | 0,020 | 0,004 | 0,006 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 20—1—94—96 (A)          | 0,037 | 0,056 | 0,076      | 0,038 | 0,038 | 0.019 | 0,004 | 0,006 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 26—1—57—58 (A)          | 0,094 | 0,489 | 0,198      | 0,101 | 0,101 | 0,047 | 0,010 | 0,029 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 27—1—76—77 (A)          | 0,073 | 0,235 | 0,135      | 0,067 | 0,067 | 0,033 | 0,007 | 0,019 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 28—1 <i>—</i> 81—82 (A) | 0,048 | 0,404 | 0,108      | 0,054 | 0,054 | 0,024 | 0,005 | 0,022 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 29—1—81—82 (A)          | Нет   | 0,002 | 0,004      | 0,009 | 0,009 | Нет   | Нет   | 0,002 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 30–1–70–71 (A)          | 0,080 | 0,492 | 0,176      | 0,089 | 0,089 | 0,043 | 0,009 | 0,019 |
| 33-1-15-16 (A)         0,064         0,577         0,165         0,082         0,082         0,037         0,008         0,033           34-1-41-42 (A)         0,110         0,682         0,231         0,188         0,118         0,056         0,012         0,065 | 32—1—58—59 (A)          | 0,070 | 0,447 | 0,149      | 0,076 | 0,076 | 0,036 | 0,078 | 0,024 |
| 34-1-41-42 (A) 0,110 0,682 0,231 0,188 0,118 0,056 0,012 0,062                                                                                                                                                                                                          | 33—1—15—16 (A)          | 0,064 | 0,577 | 0,165      | 0,082 | 0,082 | 0,037 | 0,008 | 0,038 |
|                                                                                                                                                                                                                                                                         | 34—1—41—42 (A)          | 0,110 | 0,682 | 0,231      | 0,188 | 0,118 | 0,056 | 0,012 | 0,062 |
| 36-2-92-93 (A) 0,169 2,552 0,179 0,090 0,090 0,040 0,009 0,091                                                                                                                                                                                                          | 36-2-92-93 (A)          | 0,169 | 2,552 | 0,179      | 0,090 | 0,090 | 0,040 | 0,009 | 0,098 |
| 37-2-74-75 (A) 0,229 2,617 0,139 0,048 0,048 0,016 0,005 0,086                                                                                                                                                                                                          | 37—2—74—75 (A)          | 0,229 | 2,617 | 0,139      | 0,048 | 0,048 | 0,016 | 0,005 | 0,086 |
| 38-1-73-74 (A) 0,260 2,097 0,130 0,069 0,069 0,031 0,007 0,12                                                                                                                                                                                                           | 38—1—73—74 (A)          | 0,260 | 2,097 | 0,130      | 0,069 | 0,069 | 0,031 | 0,007 | 0,122 |
| 39-1-113-114 (A) 0,076 1,297 0,113 0,057 0,057 0,025 0,006 0,04                                                                                                                                                                                                         | 39-1-113-114 (A)        | 0,076 | 1,297 | 0,113      | 0,057 | 0,057 | 0,025 | 0,006 | 0,045 |
| 40-2-42-43 (A) 0,076 0,773 0,093 0,047 0,057 0,021 0,005 0,030                                                                                                                                                                                                          | 40—2—42—43 (A)          | 0,076 | 0,773 | 0,093      | 0,047 | 0,057 | 0,021 | 0,005 | 0,030 |

# Таблица 19 Результаты факторного анализа (А-анализа) химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 465 и 465 А

| Компонент | Фактор<br>вращени | ные нагрузн<br>ия | ки после      | Kourouaur       | Факторные нагрузки после<br>вращения |              |               |  |
|-----------|-------------------|-------------------|---------------|-----------------|--------------------------------------|--------------|---------------|--|
|           | Фак-<br>тор I     | Фактор<br>II      | Фактор<br>III | KOMNOHEHT       | Фак-<br>тор I                        | Фактор<br>II | Фактор<br>III |  |
| CaO       | 0,24              | 0,91              | - 0,16        | Cu              | - 0,96                               | ·            | 1             |  |
| MgO       |                   | 0,62              | 0,49          | Со              | - 0,89                               | - 0,36       |               |  |
| Na, O     | - 0,41            | - 0,73            |               | РЬ              | - 0,89                               | - 0,36       |               |  |
| к.о       | - 0,80            |                   |               | Ga              | - 0,94                               |              |               |  |
| Fe        | 0,30              | 0,80              |               | Ge              | - 0,80                               |              |               |  |
| Mn        | 0,13              | 0,92              | - 0,14        | Мо              | - 0,67                               | - 0,20       | 0,63          |  |
| Р         |                   | - 0,04            | 0,82          | Вклад в диспео- | 58.25                                | 15,56        | 9.82          |  |
| Cr        | - 0,94            |                   | - 0,16        | сию, %          |                                      |              |               |  |
| Ni        | - 0,89            |                   |               | Суммарная дис-  | 58.25                                | 73.81        | 83.63         |  |
| V         | - 0,78            | 0,05              | 0,53          | персия, %       | 50,20                                |              | ,             |  |

#### Таблица 20

## Стратиграфическое распределение значений факторов для химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 465 и 465 А

| № обр.                           | Стратиграфичес-   | Факторные значения после вращения |                    |            |  |  |  |
|----------------------------------|-------------------|-----------------------------------|--------------------|------------|--|--|--|
|                                  | кое подразделение | Фактор I                          | Фактор II          | Фактор III |  |  |  |
| 2-1-108-110                      | Плейстоцен        | 1,08                              | 1,00               | 0,18       |  |  |  |
| 3-2-110-112                      | Верхний палеоцен  | 0,68                              | 0,78               | - 0,22     |  |  |  |
| 4-2-10-12                        | То же             | - 0,02                            | - 1,32             | 0,26       |  |  |  |
| 5-2-70-72                        | **                | 0,60                              | 0,52               | - 0,23     |  |  |  |
| 1-1-104-106 (A)                  | **                | 0,33                              | 0,58               | - 0,52     |  |  |  |
| 62- <del>-9</del> 8100           | **                | - 0,23                            | 0,15               | - 0,99     |  |  |  |
| 3-1-118-120 (A)                  | Нижний палеоцен   | - 0,76                            | - 1,46             | - 0,12     |  |  |  |
| 1059395                          | Верхний маастрихт | 0,24                              | 0,63               | - 0,67     |  |  |  |
| 9-4-105-107 (A)                  | Нижний маастрихт  | - 0,12                            | - 0,11             | - 1,68     |  |  |  |
| 101 <i>-</i> -6468 (A)           | То же             | 0,47                              | - 0,99             | - 1,27     |  |  |  |
| 111-26-30 (A)                    | **                | 0,57                              | - 1,6 <del>9</del> | - 0,75     |  |  |  |
| 12—1—70—74 (A)                   | **                | - 0,91                            | 1.41               | - 2,12     |  |  |  |
| 15–1–120–122 (A)                 | Верхний кампан    | - 0,02                            | 0,79               | - 0,37     |  |  |  |
| 16-48082 (A)                     | Тоже              | 1,11                              | 0,95               | 0,47       |  |  |  |
| 17-1-140-142 (A)                 | **                | 0,23                              | 1,06               | - 1,74     |  |  |  |
| 18-1-136-138 (A)                 | **                | - 0,27                            | 1,70               | 0,63       |  |  |  |
| 19-2-146-148 (A)                 |                   | 0,17                              | 0,71               | - 0,49     |  |  |  |
| 201-94-96 (A)                    | **                | 0,24                              | 0,77               | - 0,43     |  |  |  |
| 26–1–57–58 (A)                   | Нижний сеноман    | - 0,65                            | - 0,86             | 0,91       |  |  |  |
| 27—1 <i>—</i> 76—77 (A)          | То же             | - 0,69                            | 1,18               | 0,29       |  |  |  |
| 28—1—81—82 (A)                   | Верхний альб      | - 0,43                            | 1,02               | 0,45       |  |  |  |
| 29—1—81—82 (A)                   | То же             | 4,36                              | - 0,07             | 1,32       |  |  |  |
| 30–1 <i>–</i> 70–71 (A)          | "                 | - 0,96                            | 0,83               | 0,33       |  |  |  |
| 32—1 <i>—</i> 58 <i>—</i> 59 (A) | **                | - 1,32                            | 1,28               | 0,08       |  |  |  |
| 33—1 <i>—</i> 15—16 (A)          | "                 | - 0,85                            | 0,82               | 0,61       |  |  |  |
| 34—1 <i>—</i> 41 <i>—</i> 42 (A) | **                | - 1,02                            | - 0,53             | 1,03       |  |  |  |
| 36–2–92–93 (A)                   | **                | - 0,69                            | 0,93               | 1,82       |  |  |  |
| 37–2–74–75 (A)                   | **                | 0,49                              | 0,81               | 1,62       |  |  |  |
| 38—1—73—74 (A)                   | **                | 0,31                              | - 1,52             | 1,40       |  |  |  |
| 39–1–113–114 (A)                 | **                | - 0,10                            | - 0,50             | 1,55       |  |  |  |
| 40–2 <i>–</i> 42–43 (A)          | ·· `              | - 0,21                            | 1,21               | 0,85       |  |  |  |

IB (-) (см. рис. 14) отражает распространение в разрезе собственно гидрослюдистых пакетов и связанных с этой фазой тяжелых металлов. Преимущественное развитие ассоциации в породах верхнего альба-нижнего сеномана, обогащенных базальтовой вулканокластикой, косвенно свидетельствует о ее эпигенетическом происхождении.

Ассоциация IIA (+): CaO (0,91), MgO (0,62), Fe (0,80), Mn (0,92). Она представлена глубоко измененной базальтовой вулканокластикой и развитыми по ней выделениями, корками, обрастаниями гидроокислов Mn и Fe. Развита эта ассоциация преимущественно в породах верхнего альба—нижнего сеномана и верхнего кампана.

Ассоциация IB (–): Na<sub>2</sub>O (–0,73), Co (–0,36), Pb (–0,36). Рассматриваемая группировка компонентов является кластером-антагонистом относительно ассоциации IIA (+). Можно полагать, что ассоциация IIB (–) представлена относительно обогащенными Na<sub>2</sub>O вулканокластическими компонентами, с которыми довольно умеренно связаны Co и P. Снятие разбавляющего эффекта карбонатных и кремнистых компонентов позволяет выявить относительно равномерное распространение группировок IIA (+) и IIB (–) в разрезе.

Ассоциация IIIA (+): MgO (0,49), P (0,82), V (0,53), Mo (0,63). Она представлена набором избыточных (против принятой нормы) компонентов, распространение которых четко ограничено породами верхнего альба—нижнего сеномана (см. рис. 14). Аналогичное распространение в разрезе, как отмечалось, имеет группировка IA (+)

|          |                                            | 6                | a,      | Лити                  | <b>ЛИВИЛ</b>                            | - M-                                   |                            |
|----------|--------------------------------------------|------------------|---------|-----------------------|-----------------------------------------|----------------------------------------|----------------------------|
|          | пратигра-<br>Бические<br>Поразделе-<br>Ния | QHQ3X)<br>VIIQ3J | l'nybun | sayaa                 | рансыдда<br>ахон<br>надоалс<br>- ћа вна | ічш<br>эносімах<br>шапніп <b>е</b> з   | № 0бр.                     |
|          | Плейстоцен                                 |                  |         | ┶┶┶┶                  | T+T+T                                   |                                        | 2-1-108-110                |
| 3        |                                            |                  |         | I ≜⊥÷.A               | │ ▲ · ▲                                 | [=]=]=]                                | 3-2-110112                 |
| 3        | верхний                                    |                  |         |                       |                                         |                                        | 4-2-10-12                  |
| 15       | палеоцен                                   | ٦ ا              |         | ┷╻┷╻╸                 | Ĩ⊥ d' d'                                | F_=_=_=                                | <u>5-2-70-72</u>           |
| Ē        |                                            | 52               |         |                       |                                         | =====                                  | 1-1-104-106 (A)            |
|          | Helenau                                    | ΠÌ.              |         |                       |                                         | ┟╕ <sub>┛</sub> ╕ <sub>┛</sub> ╡       | 6-2-98-100                 |
| $\vdash$ | nancouch                                   | ⊈                | _       |                       | ┶╻┷╻┷                                   |                                        | 3-1-118-120 (A)            |
|          | Malacinousin                               |                  | · 유     | │ <sup>────</sup> ──→ | シジン                                     | - × _ ×                                | 10-5-93-95                 |
|          |                                            | <del>-</del>     |         | │ <u>▲┶⊥┶</u> ⊥       | ┝╩╁╧┶                                   | x-x-                                   | 9-4-105-107 (A)            |
|          | Нижний                                     |                  | 17      | لكمصل                 | 出土水                                     |                                        | 10-1-64-68 (A)             |
|          | maacmpaarm                                 |                  | 0       | L, ┶╇┷,               | <u> </u>                                | - x - x                                | 11-1-26-30 (A)             |
|          |                                            |                  |         |                       | <u> </u>                                | × – × –                                | 12-1-70-74 (A)             |
| 12       |                                            |                  |         | I▲_ ▲_ ▲              |                                         | - × - ×                                | 15-1-120-122 (A)           |
|          | <i>R</i>                                   |                  |         | ┶╌┷╺                  | E ALFI                                  | × - × -                                | 16-4-80-82 (A)             |
|          | оер <b>т</b> нии<br>Ка <b>ма</b> ан        |                  | l       | ا بٹ ہ ڑے             |                                         | - × - ×                                | 17-1-140-142 (A)           |
|          |                                            |                  |         | ┶┶┶                   | <u>▲</u>                                | -x - x                                 | 18-1-136-138 (A)           |
| 1        |                                            |                  |         |                       | 17.42                                   | x - x -                                | 19-2-146-148 (A)           |
|          |                                            |                  |         |                       |                                         | – x – x                                | 20-1-94-9 <del>0</del> (A) |
| 0        | Нитний                                     |                  | [       |                       |                                         | EX-X-X                                 | 26-1-57-58 (A)             |
|          | CENOMAN                                    |                  |         |                       |                                         | EX-X-X                                 | 27-1-76-77 (A)             |
| 1        |                                            | 2                |         |                       | ÷                                       | ĚXĚX                                   | 28-1-81-82 (A)             |
| 0        |                                            | ð                | ~       |                       |                                         |                                        | 29-1-81-82 (A)             |
|          |                                            | 4                | -       |                       |                                         | XXX                                    | 30-1-70-71 (A)             |
|          | Верхний                                    | Ă                | 4       |                       | 法王法                                     | $\times$                               | 32-1-58-59 (A)             |
|          | альб                                       | 26               | 님       |                       |                                         | $\overline{X}\overline{X}$             | 33-1-15-16 (A)             |
| 11       |                                            | Ă                | 6,0     |                       |                                         | $\overline{X}\overline{X}\overline{X}$ | 34-1-41-42 (A)             |
|          |                                            |                  | 57      |                       | <u> </u>                                | ~~~~                                   | 36-2-92-93 (A)             |
|          |                                            |                  |         |                       | 국공작                                     | (XXX)                                  | 37-2-74-75 (A)             |
|          |                                            |                  |         |                       | 9 5                                     | $\approx$                              | 38-1-73-74 (A)             |
|          |                                            |                  |         |                       | <u> </u>                                | $\rightarrow$                          | 39-1-113-114 (A)           |
|          |                                            |                  |         |                       | <b>会</b> 组织                             |                                        | 40-2-42-43 (A)             |
|          | Базальт                                    |                  | _       | 36.73.6               | 1                                       | 1.2                                    |                            |

Рис. 14. Стратиграфическое распределение факторных значений главных парагенетических ассоциаций химических компонентов (в пересчете на БТККВ) в разрезе постюрских отложений скв. 465 и 465А

Глинистые компоненты — см. на рис. 13, литология — на рис. 2

(см. рис. 13). Таким образом, идентичность минерального состава этих двух ассоциаций достаточно очевидна: обе представлены базальтовой вулканокластикой, измененной в монтмориллонит-иллитовые минералы, к ней принадлежат также и связанные тяжелые металлы.

Ассоциация IIIB (–): СаО (–0,16), Мп (–0,14), Сг (–0,16). Слабая значимость факторных нагрузок позволяет только ориентировочно судить о фазовом составе ассоциации. Обращает на себя внимание весьма четкая локализация этой группировки в разрезе: серия I (верхний кампан–плейстоцен). Близкое стратиграфическое распространение имеет рассматривавшаяся выше ассоциация IB (–) (см. рис. 13), представленная биогенными карбонатами (наннопланктонные и фораминиферово-наннопланктонные илы).

Следует подчеркнуть, что ассоциация IIIВ (-) представлена набором компонентов, избыточных по отношению к нормативным молекулам. Идентичность распространения ассоциаций IB (-) и IIIB (-) (см. рис. 13) и особенности состава компонентов позволяют считать, что группировка IIIВ (-) может быть представлена остаточной фазой после перекристаллизации биогенных карбонатов, в частности диа-эпигенетическими гидроокислами Mn. О реальности такой постседиментационной перекристаллизации биогенных карбонаты изучения осадков под микроскопом и особенности распространения парагенетических группировок IB (-) и IIB (-) в разрезе.

|                 | Факторные значения ассоциации         |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
|-----------------|---------------------------------------|-----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| LA(+)           | IB(-)                                 | ПА(+)           | ПВ(-)                                   | ША(+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Шв()            |  |  |  |  |  |  |  |
| 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0                       | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0                         | 0,5 1,0 1,5 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,5 1,0 1,5 2,0 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         | KA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |  |  |  |  |  |
|                 | ·                                     |                 |                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
|                 |                                       | ×               |                                         | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
|                 |                                       |                 | 50000000000000                          | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |
| P               |                                       |                 | G                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |  |  |  |  |  |
| <u></u>         | · · · · · · · · · · · · · · · · · · · |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
|                 | ·                                     | <u> </u>        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
| <u> </u>        | <b></b>                               | <u></u>         |                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
|                 |                                       |                 | 100000000000000                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
| <u></u>         |                                       |                 |                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |  |  |  |  |  |
| <u></u>         | ł                                     |                 | ·                                       | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |  |  |  |  |  |  |  |
| <u> </u>        |                                       |                 |                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
| h               |                                       |                 | 000000000000000000000000000000000000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
| N               |                                       |                 | ł                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |  |  |  |  |  |
| N               |                                       |                 | 1988251 ·······                         | 100001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1999            |  |  |  |  |  |  |  |
|                 | <b></b>                               |                 | 00000000                                | <u>100000</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         | <b>K</b> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |  |  |  |  |  |  |  |
| 426             |                                       |                 |                                         | Killing and the second |                 |  |  |  |  |  |  |  |
| 1111 250 1111   |                                       |                 | f                                       | 100000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         | <b>R</b> XXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |
| <b></b> ,       |                                       |                 | 6353                                    | 188888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ····            |  |  |  |  |  |  |  |
| - <u>-</u>      |                                       | 1               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
|                 |                                       | T               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |  |
|                 | Γ                                     | 1               |                                         | KXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |  |  |  |  |  |  |  |
|                 |                                       |                 |                                         | KXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               |  |  |  |  |  |  |  |



СРЕДНИЕ СОДЕРЖАНИЯ И СКОРОСТИ АККУМУЛЯЦИИ КОМПОНЕНТОВ (ТАБЛ. 21; РИС. 15-17)

Распределение средних содержаний. Анализ особенностей распределения средних содержаний главных компонентов осадков, пород в главных геохронологических подразделениях разреза (см. табл. 15, 18, рис. 15, 16) с учетом рассмотренных выше форм их нахождения (см. рис. 13, 14) позволяет наметить следующие этапы и фазы в геохимической истории седиментации.

1-й этап: поздний альб—ранний сеноман (ранний океанический). Он характеризу-

#### Таблица 21

## Средние содержания и средние скорости аккумуляции химических компонентов для главных геохронологических подразделений разреза постюрских отложений скв. 465 и 465 А

| Лито-<br>логи-<br>ческое<br>под-<br>разде-<br>ление | Литология                                                                 | Керны                | Интервал глу-<br>бин от поверх-<br>ности дна, м | Мощ-<br>ность, м | Стратиграфическо<br>подразделение             | е Қерны                                    |
|-----------------------------------------------------|---------------------------------------------------------------------------|----------------------|-------------------------------------------------|------------------|-----------------------------------------------|--------------------------------------------|
|                                                     | <u> </u>                                                                  |                      | <u></u>                                         | <b> </b>         | і<br>Плейстоцен<br>Палеоцен Верхний<br>Нижний | 1 - 2-1-130<br>2-6-60 - 6-CC<br>7-1 - 8-CG |
|                                                     |                                                                           |                      |                                                 |                  | Верхний<br>Маастрихт Нижний                   | 9—1 — 8 (A)—CC<br>9—1 (A) — 12 (A)         |
| I                                                   | Наннопланк-<br>тонные и фо-<br>раминиферово-<br>наннопланктон-<br>ные илы | 1–11<br>(1A–<br>25A) | 0–276,0                                         | 276,0            | Верхний кампан                                | 12–1 – 20–CC                               |
| н                                                   | Тонкослоистые<br>известняки                                               | 26A-<br>40A          | 276,0-411,7                                     | 135,7            | Нижний сеноман<br>Верхний альб                | 25CC - 27CC<br>28-1 - 40CC                 |
| Ш                                                   | Базальт                                                                   | 40A-<br>46A          | 411,7—476,0                                     | 64,3             | -                                             |                                            |

\* Определения природно-влажных образцов [Initial Reports . . , 1981].

| Ctosturoschulopico             |                                     |                            | s            | iiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> |             |            |
|--------------------------------|-------------------------------------|----------------------------|--------------|------------------|--------------------------------|-------------|------------|
| подразделение                  | Керны                               | интервал глу-<br>бин, м    | 1            | 2                | 1                              | 2           |            |
| Плейстоцен                     | 1 - 2-1-130                         | 0,02,3                     | 5,75         | 8,4              | 1,57                           | 2,3         | <b> </b> - |
| Палеоцен Верхний<br>Нижний     | 2660 - 6CC<br>7-1 - 8CC             | 9,148,5<br>48,561,5        | 1,05<br>0,72 | 7,6<br>2,2       | 0,07<br>0,10                   | 0,5<br>0,3  |            |
| Мазастрихт Верхний<br>Нижний   | 9–1 – 8 (A) –CC<br>9–1 (A) – 12 (A) | 61,5—106,0<br>106,0144,5   | 2,61<br>0,35 | 54,0<br>5,3      | 0,16<br>0,04                   | 3,3<br>0,6  |            |
| Верхний кампан                 | 12-1 - 20-CC                        | 144,5-229,0                | 0,29         | 7,7              | 0,05                           | 1,3         |            |
| Нижний сеноман<br>Верхний альб | 25-CC - 27-CC<br>28-1 - 40-CC       | 267,0—295,5<br>295,5—419,5 | 0,56<br>3,58 | 13,5<br>231,5    | 0,17<br>1,12                   | 4,1<br>72,4 |            |

#### Таблица 21 (окончание)

ется относительно высокими концентрациями SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и ассоциирующих тяжелых металлов. Примечательной особенностью этого этапа являются высокие содержения (%) С<sub>орг</sub>: поздний альб — 0–2,42 (среднее — 0,83), ранний сеноман — 0,83–0,88 (среднее — 0,86). В рассматриваемом этапе могут быть выделены две фазы.

Позднеальбская фаза представлена осадками, отличающимися относительно высокими содержаниями SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и ассоциирующими тяжелы-

| Интервал глу-<br>бин. м | Мощ-<br>ность, м | Физические пара-<br>метры*           |                        | Геохроно-                                        | Скорость седиментации                    |                                                                                |  |
|-------------------------|------------------|--------------------------------------|------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------|--|
|                         |                  | Плот-<br>ность,<br>г/см <sup>3</sup> | ,<br>Влаж-<br>ность, % | продолжи-<br>тельность,<br>млн.лет <sup>+3</sup> | м · 10 <sup>-6</sup> · год <sup>-1</sup> | мг · см <sup>-2</sup> : 10 <sup>-3</sup><br>· год <sup>-1</sup> + <sup>3</sup> |  |
| 0.0-2,3                 | 2,3              | 1,54                                 | 40,0 (?)               | 1,8                                              | 1,28                                     | 146                                                                            |  |
| 9,1-48,5                | 39,4             | 1,54                                 | 35,0                   | 6,5                                              | 6,1                                      | 726                                                                            |  |
| 48,5-61,5               | 13,0             | 1,54                                 | 35,0 (?)               | 5,0                                              | 2,6                                      | 309                                                                            |  |
| 61,5-106,0              | 43,5             | 1,54                                 | 35,0                   | 2,5                                              | 17,4                                     | 2070                                                                           |  |
| 106,0-144,5             | 38,5             | 1,54                                 | 35,1                   | 2,5                                              | 15,4                                     | 1520                                                                           |  |
| 144,5-229,0             | 84,5             | 1,60                                 | 34,8                   | 4,0                                              | 21,2                                     | 2645                                                                           |  |
|                         |                  |                                      |                        |                                                  |                                          | 0470                                                                           |  |
| 267,0-295,5             | 28,5             | 2,22                                 | 5,60                   | 2,5                                              | 11,4                                     | 2470                                                                           |  |
| 295,5-419,5             | 123,5            | 2,22                                 | 12,7                   | 4,0                                              | 30,9                                     | 6467                                                                           |  |

\*<sup>2</sup> По данным Дж. Харденбола и В. Берггрена (1978 г.) [Initial Reports . . , 1981] и Дж. ван Хинта [Hinte, 1976].

\*<sup>3</sup> В пересчете на воздушно-сухой материал (с учетом природной влажности) [Initial Reports.., 1981].

| CaCO3                  |                  | Fe           |             | Mn           |              | Ρ             |              |
|------------------------|------------------|--------------|-------------|--------------|--------------|---------------|--------------|
| 1                      | 2                | 1            | 2           | 1            | 2            | 1             | 2            |
| 88,27                  | 128,9            | 0,52         | <br>0,8     | 0,01         | 0,01         | 0,03          | 0,04         |
| 95,14<br><b>94,</b> 30 | 690,7<br>291,4   | 0,09<br>0,14 | 0,7<br>0,4  | 0,03<br>0,02 | 0,2<br>0,06  | 0,04<br>0,04  | 0,3<br>0,12  |
| <b>92</b> ,23<br>95,87 | 1909,2<br>1457,2 | 0,14<br>0,14 | 2,9<br>2,1  | 0,01<br>0,01 | 0,21<br>0,15 | 0,01<br>0,003 | 0,21<br>0,05 |
| 94,70                  | 2550,0           | 0,15         | 4,0         | 0,01         | 0,26         | 0,01          | 0,26         |
| 95,61<br>88,07         | 2304,2<br>5695,5 | 0,17<br>0,40 | 4,1<br>25,9 | 0,01<br>0,02 | 0,24<br>1,30 | 0,02<br>0,08  | 0,48<br>5,17 |

ми металлами. Столь выраженная обогащенность указанными компонентами связана с наличием значительных количеств вулканокластических компонентов базальтового состава и гидротермальных, эксгаляционных продуктов.

Раннесеноманская фаза представлена осадками, литологически и по химизму главных компонентов (CaCO<sub>3</sub>, C<sub>орг</sub>идр.) близкими к позднеальбским. Однако в них наблюдается существенное уменьшение концентраций компонентов вулканогенной природы: SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и тяжелых металлов.

| Стратиграфическое<br>подразделение | SiO2                                     | AlgOg        | CaCO <sub>2</sub> | Fe           |
|------------------------------------|------------------------------------------|--------------|-------------------|--------------|
|                                    | 1,0 2,0 3,0 4,0                          | 0,20,40,60,8 | 2,0 4,0 6,0 8,0   | 0,10,20,30,4 |
| Плейстацен                         | 5,75                                     | 1,57         |                   | 0,52         |
| Верхний плиоцен                    | Ô                                        | 0            | Ô                 | 0            |
| Нижний плиоцен                     | 0                                        | 0            | 0                 | 0            |
| Верхний миоцен                     |                                          |              |                   |              |
| Средний миоцен                     |                                          |              |                   |              |
| Нитний миоцен                      |                                          |              |                   |              |
| Верхний олигоцен                   |                                          |              | Q                 | Q            |
| Нижний олигоцен                    |                                          |              |                   |              |
| Верхний зоцен                      |                                          |              |                   |              |
| Средний зоцен                      |                                          |              |                   |              |
| Нижний зоцен                       | •                                        |              |                   |              |
| Верхний палеоцен                   |                                          |              |                   |              |
| Нитний палвацен                    |                                          |              |                   |              |
| Верхний маастрихт                  |                                          |              |                   |              |
| Нижний маастрихт                   |                                          |              |                   |              |
| Верхний кампан                     |                                          |              |                   |              |
| Нижний кампан                      |                                          |              |                   |              |
| Верхний сантон                     |                                          |              |                   |              |
| Нижний сантон                      | 0                                        | 0            | Ø                 | 0            |
| Верхний коньяк                     |                                          |              | *******           | *******      |
| Нитний коньяк                      |                                          |              |                   |              |
| Верхний турон                      |                                          |              |                   |              |
| Средний турон                      |                                          |              |                   |              |
| Нитний туран                       |                                          |              |                   |              |
| Верхний сеноман                    |                                          |              |                   |              |
| Средний сенаман                    |                                          |              |                   |              |
| Нижний сеноман                     |                                          |              |                   |              |
| верхний альб                       | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | (1,12)       |                   |              |
| Базальт                            |                                          |              |                   |              |

Рис. 15. Распределение средних содержаний (вес.%, в пересчете на воздушно-сухую навеску) SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P, C<sub>OPT</sub> и нормативных молекул CeCO<sub>3</sub>, MnCO<sub>3</sub>, Fe<sub>2</sub>CO<sub>3</sub>, MgCO<sub>3</sub> в разрезе постюрских отложений скв. 465 и 465A

2-й этап: позднемеловой (средний сеноман—поздний маастрихт). Химический состав осадков начальных фаз этого этапа (средний сеноман — сантон) из-за низкого выхода керна, преобладания в разрезе кремней остается практически неизвестным. Однако фрагментарные данные бортовых описаний [Initial reports..., 1981] позволяют считать, что формационно осадки этого этапа относительно однородны.

Содержания главных компонентов и ассоциирующих тяжелых металлов в осадках поздней стадии данного этапа (поздний кампан — поздний маастрихт) не превышают значений, характерных для пелагических фораминиферово-наннопланктонных илов открытого океана. Обращает на себя внимание несколько повышенное содержание нормативных молекул MnCO<sub>3</sub>, FeCO<sub>3</sub> и MgCO<sub>3</sub> в осадках раннего кампана—раннего маастрихта, обусловленное эпигенетическим изменением примеси мафической вулканокластики.

3-й этап: раннетретичный (ранний—поздний палеоцен). Существенное преобладание CaCO<sub>3</sub> в форме фораминиферово-наннопланктонных илов в значительной степени затушевывает особенности аутигенных компонентов, выявляемых при рассмотрении данных в пересчете на БТККВ, например концентрации Р и К<sub>2</sub>O (ранний палеоцен, см. рис. 16). Примечательны высокие содержания нормативных молекул MnCO<sub>3</sub>, FeCO<sub>3</sub> (ранний палеоцен) и MgCO<sub>3</sub> (поздний палеоцен) (см. рис. 15).

|           |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                 |                   |  |
|-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|-------------------|--|
| Mn        | Mn P                                  |                                       | MnCO <sub>3</sub>                     | Fe <sub>2</sub> CO <sub>3</sub> | MgCO <sub>3</sub> |  |
| 0,01 0,03 | 0,02 0,06                             | 0,2 0,4 0,6 0,8                       | 0,005 0,020                           | 0,10,20,30,4                    | 0,10,40,81,2      |  |
| 500 ····· |                                       | 0.0                                   | 60000                                 |                                 | 0.0               |  |
| <u> </u>  |                                       | 0                                     | Ô                                     | Ô                               | Ő                 |  |
| Ő         | Ő                                     | Ő                                     | Ő                                     | Ő                               | Ő                 |  |
|           | *                                     |                                       |                                       | *******                         |                   |  |
|           |                                       |                                       |                                       |                                 |                   |  |
|           |                                       |                                       |                                       |                                 |                   |  |
|           |                                       | 0                                     |                                       | Ψ                               | Ų                 |  |
| (//6      |                                       |                                       |                                       |                                 |                   |  |
|           |                                       | I                                     |                                       |                                 |                   |  |
|           |                                       |                                       |                                       |                                 |                   |  |
| 00000000  | +                                     |                                       | ·····                                 | 3                               |                   |  |
|           |                                       | 0,0                                   |                                       | 8                               |                   |  |
| 0000001   |                                       | 0,0                                   | xxxx0,032 xxx                         | 0.0                             | 0,0               |  |
| <b>₩</b>  | N                                     | 0,0                                   |                                       | <u> </u>                        | 0,0               |  |
|           | N 0,003                               | 0,0                                   |                                       | 888888<br>88                    |                   |  |
| 100       | (Reps(R))                             |                                       | ¥Û                                    | ×                               |                   |  |
|           |                                       |                                       |                                       |                                 |                   |  |
| 0         | 0                                     | 0                                     | 0                                     | 0                               | 0                 |  |
| _         |                                       |                                       |                                       |                                 |                   |  |
| (Пе,      | DE DO18)                              |                                       |                                       |                                 |                   |  |
| 88        | N                                     |                                       |                                       | <b>**</b>                       |                   |  |
|           | V//V                                  |                                       |                                       | ****                            |                   |  |
|           | · · · · · · · · · · · · · · · · · · · | **********                            | 5. 1. 2 2 4 1 5.                      |                                 |                   |  |

4-й этап: третичный-четвертичный. Резко сокращенные мощности осадков этого этапа, их переотложенный характер, наличие интервалов в разрезе кремней обусловили дефицит образцов и соответственно слабую охарактеризованность химическими анализами. Данные по осадкам плейстоцена (см. табл. 15, 18, 21, рис. 15, 16) свидетельствуют о том, что они представлены фораминиферово-наннопланктонными илами с примесью базальтовой вулканокластики. Наличие таких вулканогенных компонентов проявилось в относительно повышенных содержаниях Al<sub>2</sub>O<sub>3</sub> и Fe, а их постседиментационное растворение — в заметных количествах (см. рис. 15) нормативных молекул FeCO<sub>3</sub> и MnCO<sub>3</sub>.

Распределение средних скоростей аккумуляции компонентов (см. табл. 21, рис. 17). Рассмотрение расчетных данных по средним линейным скоростям седиментации и аккумуляции компонентов, величинам их средних содержаний и формам нахождения в осадке позволяет выделить ряд этапов геохимической истории седиментации района. В целом эти этапы и фазы соответствуют интервалам, установленным выше при анализе распределения средних содержаний компонентов. Важно подчеркнуть, что наличие перерывов в нижней части разреза (средний сеноман—средний турон; поздний коньяк; ранний кампан; см. рис. 17) в конечном счете сказывается в сокращении и без того минимальных значений скоростей аккумуляции осадков и компонентов. Таким образом, интерпретация этих данных может проводиться лишь в общем контексте всей информации по геохимии, литологии, минералогии и условиям осадкообразования.

| Стратиграфичес-      |                 |                                       |                 |                   |                    |
|----------------------|-----------------|---------------------------------------|-----------------|-------------------|--------------------|
| кое<br>подразделение | Fe              | Mn                                    | P               | MgO               | к <sub>2</sub> 0   |
|                      | 2,0 4,0 6,0 8,0 | 2,0 4,0 6,0 8,0                       | 1,0 2,0 3,0 4,0 | 4,0 8,0 12,0 16,0 | 5,0 10,0 15,0 20,0 |
| Плейстоцен           |                 | 0,0                                   |                 | HANDINGHÎNÎ       |                    |
| Верхний плищен       | ð               | Ø                                     | 0               | 0                 | $\odot$            |
| Нижний плионен       |                 | Ô                                     | 0               | 0                 | $\odot$            |
| BEPITHUU MUOYEH      |                 |                                       | Å               |                   |                    |
| Средний миоцен       |                 |                                       |                 |                   |                    |
| Нитний миоцеп        |                 |                                       |                 |                   |                    |
| верхний олигоцен     | 0               | 0                                     |                 | 0                 | 0                  |
| Нитний олагоцен      |                 |                                       | (Перерыб)       |                   |                    |
| верхний зоцен        |                 |                                       |                 |                   |                    |
| Средний зоцен        |                 |                                       |                 |                   |                    |
| Нимний зацен         |                 |                                       |                 |                   |                    |
| Верхний палеоцен     |                 |                                       | <u>NN</u>       |                   |                    |
| Нитний палеоцен      | 0,0             | 0,0                                   | /////           | 0,0               | 28,81              |
| верхний маастрихт    |                 |                                       | N               |                   |                    |
| Нижний маастрихт     |                 | 8                                     | []              | 0,0               |                    |
| Верхний кампан       |                 |                                       | Ñ               |                   | 8                  |
| Нимний кампан        |                 |                                       | (Перерыв)       |                   |                    |
| верхний сантон       |                 |                                       | 5               | <u> </u>          | 0                  |
| Нижний сантон 🖇      |                 |                                       |                 |                   |                    |
| Верхний коньяк       |                 |                                       |                 | 1                 |                    |
| Нижний коньяк        |                 |                                       |                 |                   |                    |
| Верхний турон        |                 |                                       |                 |                   |                    |
| Средний турон        |                 |                                       | (Перерыв)       |                   |                    |
| Нимпий турон         |                 |                                       |                 |                   |                    |
| Верхний сеноман      |                 |                                       |                 |                   |                    |
| Средний сеноман      |                 |                                       |                 |                   |                    |
| Нижний сеноман       |                 |                                       | $\mathbb{N}$    | 24,68             |                    |
| Верхний альб         |                 |                                       | V////V          | MUINATERNITERNING |                    |
| Базальт              |                 | · · · · · · · · · · · · · · · · · · · |                 |                   |                    |

Рис. 16. Распределение средних содержаний (вес.% в пересчете на БТККВ) Fe, Mn, P, MgO и K<sub>2</sub>O в разрезе постюрских отложений скв. 465 и 465А

1-й этап: поздний альб—ранний сеноман (раннеокеанический). Характеризуется максимальными скоростями накопления осадков и составляющих компонентов. Примечательны весьма высокие скорости аккумуляции компонентов, поступающих в форме вулканокластического материала базальтового состава и продуктов гидротерм, эксгаляций: Fe, Mn, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, Ри тяжелых металлов. Осадки турбидитной природы накапливались в обстановке относительно мелководной котловины со стагнированным режимом (дефицит кислорода в придонном слое воды).

Для позднеальбской фазы этого этапа установлены значения скоростей седиментации и аккумуляции компонентов, характерные для начальных (протоокеанических) стадий развития бассейна [Tiercelin, Faure, 1978] и близкие к подобным параметрам фазы позднего баррема—раннего апта западной части гор Маркус-Неккер (скв. 463).

Для раннесеноманской фазы этапа значения скоростей седиментации и аккумуляции компонентов существенно ниже, чем для позднего альба, что связано в значительной мере с сокращением мощностей этих осадков, обусловленным среднесеноманским-среднетуронским перерывом, и в меньшей степени – с собственно понизившимися темпами седиментации при некотором углублении бассейна.

2-й этап — позднемеловой (средний сеноман—поздний маастрихт) представлен отложениями с резко сокращенными вследствие перерывов мощностями (см. рис. 17). Эта особенность находит отражение в том, что рассчитан-68

| (magnusage)       | Сларасть с | едимснтации |                                                                                                                 |                        |                    |                      |                         |              |
|-------------------|------------|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--------------------|----------------------|-------------------------|--------------|
| KOE               | T          | π           | -0363                                                                                                           | so.                    | AL-O-              | Fe                   | Mn                      | Р            |
| подразделение     | 1          | <u> </u>    | Caco3                                                                                                           | 5102                   | <b>1203</b>        | Te                   |                         |              |
|                   | 5 10 15 20 | 1000 3000   | 1000 2000                                                                                                       | 2,0 4,0 6,0 <b>8,0</b> | 0,5 1,0 1,5 2,0    | 1,0 2,0 3,0 4,0      | 0,05 0,15               | 0,10,20,30,4 |
| <i>Плейстацен</i> |            |             |                                                                                                                 |                        |                    |                      | S                       | Ŋ            |
| Верхний плиоцен   |            |             | $\odot$                                                                                                         | 0                      | 0                  | $\odot$              | 0                       | Ø            |
| Нижний плиоцен    | 0          | 0           | 0                                                                                                               | 0                      | 0                  | 0                    | 0                       | 0            |
| Верхний миоцен    |            |             |                                                                                                                 |                        |                    |                      |                         |              |
| Средний миоцен    |            |             | -                                                                                                               |                        |                    | <u> </u>             |                         | •            |
| Нитний миоцен     |            |             |                                                                                                                 |                        |                    |                      |                         |              |
| Верхний алигоцен  | 0          | 0           | 0                                                                                                               | O (Reg                 | RONB)              | <u> </u>             | 0                       | 0            |
| Нитний олигоцен   |            |             |                                                                                                                 |                        | ·                  |                      |                         |              |
| Верхний зоцен     |            |             |                                                                                                                 |                        |                    |                      |                         |              |
| Средний зоцен     |            |             |                                                                                                                 |                        | L                  |                      |                         |              |
| Нижний зоцен      |            |             |                                                                                                                 |                        | <b>[</b>           |                      |                         |              |
| Верхний палеоцен  |            | 8           |                                                                                                                 |                        |                    | <b>.</b>             |                         | <u> </u>     |
| Нижний палеоцен   |            |             |                                                                                                                 |                        |                    |                      |                         |              |
| Верхний маастрих  | <i>m</i>   |             |                                                                                                                 | 54,0                   | 3,3                |                      |                         |              |
| Мижний маастризсп | 7          |             |                                                                                                                 |                        |                    |                      |                         | $\mathbb{N}$ |
| Верхний кампан    | النبينية   |             | 25 50                                                                                                           |                        |                    |                      | 88860,26 <b>.</b> 8881. | 7771         |
| Нижний кампан     |            |             |                                                                                                                 | (Пери                  | <u>9,06/0)</u>     |                      |                         |              |
| Верхний сантон    |            | ×           | (?                                                                                                              |                        |                    |                      |                         |              |
| Нижний сантон     |            | <u> </u>    |                                                                                                                 |                        |                    |                      |                         |              |
| Верхний коньяк    |            |             |                                                                                                                 |                        |                    |                      |                         |              |
| HUMHUU KONBAK     | ł          |             |                                                                                                                 |                        |                    |                      |                         |              |
| верхний турон     | 4          |             |                                                                                                                 | 10                     |                    |                      |                         |              |
| среанци туран     |            |             |                                                                                                                 | (IIEPI                 | <i>Ерыо</i> )<br>' |                      |                         |              |
| Пижний турон      | ł          |             |                                                                                                                 |                        |                    |                      |                         | 1            |
| вериниц сеноман   | ł          |             |                                                                                                                 |                        |                    |                      |                         |              |
| сревний сеноман   |            | 2000000     | ininininini inininini ininininini ininininini inininini inininini inininini inininini inininini inininini inini |                        |                    |                      |                         | the second   |
| NUMHUU CEHOMAH    |            |             |                                                                                                                 | 13,9                   |                    |                      |                         | () (0)       |
| серхниц альб      | 30,9<br>   | 646/        | <u> </u>                                                                                                        | 231,5                  |                    | 25,9                 | 00000 1,30 000          | 7721/77      |
| <i>БАЗАЛЬМ</i>    |            |             | line in the second                                                                                              | ·····                  |                    | منتقد ، ب<br>منتقد ا | متخضنا                  |              |

Рис. 17. Распределение средних скоростей седиментации (I — мм·см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>; II — мг<sup>.</sup>см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>) и аккумуляции компонентов (мг<sup>.</sup>см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>) СаСО<sub>3</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Мл и Р в разрезе постюрских отложений скв. 465 и 465А
ные средние скорости седиментации и накопления компонентов не соответствуют величинам скоростей, которые следовало бы ожидать в случае отсутствия перерывов при направленном в то время к северу движении Тихоокеанской плиты. Согласно модификациям модели горизонтального перемещения Тихоокеанской плиты, южный район возвышенности Хесса мог пересекать экваториальную зону высокой биологической продуктивности в течение сеномана—коньяка [Lancelot, Larson, 1975; Lancelot, 1978] либо в близкий интервал времени [Andel, 1974]. Имеющиеся данные свидетельствуют, что в течение всего постюрского времени изучаемый район располагался выше глубины карбонатной компенсации.

Напомним, что северная и южная границы современной приэкваториальной зоны высокой биологической продуктивности Тихого океана примерно соответствует параллелям 10° с.ш. и 10° ю.ш. Можно полагать, что в течение раннего маастрихта южный район возвышенности Хесса еще не испытывал перемещения за пределы северной границы экваториальной зоны высокой биологической продуктивности. Пересечение этой границы, очевидно, произошло в начале позднего маастрихта, как об этом свидетельствуют величины скоростей седиментации и накопления компонентов.

Вместе с тем следует учитывать возможность существенного увеличения мощности и, следовательно, скорости аккумуляции осадков в раннем маастрихте в результате покального сноса, переотложения осадочного материала с поднявшихся в это время блоков (более подробно о структурном положении см. в бортовом описании [Initial reports..., 1981]).

3-й этап — раннетретичный (ранний—поздний палеоцен) знаменуется существенным снижением скоростей седиментации фораминиферово-наннопланктонных илов, проходившей в северной олиготрофной зоне Тихого океана. Для главных компонентов и ассоциирующих тяжелых металлов скорости аккумуляции не превышают значений, характерных для карбонатных пелагических илов [Arrhenius, 1963, 1967; Безруков, Романкевич, 1970; Богданов, Чеховских, 1979; Лисицын, 1974, 1978; Mac Arthur, Elderfield, 1977]. Однако обращают на себя внимание относительно повышенные значения скоростей аккумуляции Мп и Р для позднего палеоцена (соответственно 0,20 и 0,29 мг·см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>), что может быть связано с наличием заметных количеств (до 10–15%) примеси гиалопелитового, алевритового материала базальтового состава, существенно измененного в смектит-иллитовые продукты при весьма значительном разбавлении карбонатными компонентами (СаСО<sub>3</sub> до 95,14%; см. рис. 13 и 14).

4-й этап — третичный—четвертичный в значительной части, как отмечалось выше, довольно скудно охарактеризован керновым материалом. Мощности зоцен-плиоценовых отложений резко сокращены вследствие многочисленных перерывов, сопровождавшихся частичным переотложением и перемывом осадков [Initial Reports..., 1981].

Сравнительно ограниченная информация об осадках позднего плиоцена и плейстоцена позволяет считать, что в это время отлагались фораминиферовые, наннофоссилиевые илы с характерными для пелагических осадков значениями скоростей аккумуляции компонентов.

#### ГЕОХИМИЧЕСКАЯ ИСТОРИЯ СЕДИМЕНТАЦИИ

В геохимической истории постюрской седиментации южного района возвышенности Хесса могут быть выделены этапы и фазы, которые в значительной мере соответствуют геохронологическим интервалам, установленным на основе интерпретации средних содержаний и скоростей аккумуляции компонентов, рассматриваемых в общем контексте данных по геохимии, минералогии, литологии осадков.

1-й этап: поздний альб-ранний сеноман (раннеокеанский). В течение этого времени в южном районе возвышенности Хесса накапливались осадки, представленные в литифицированном состоянии тонкослоистыми оливково-серыми известняками с подчиненными прослоями серых известняков [Initial Reports..., 1981]. Характерной особенностью этих отложений является наличие заметных количеств сапропелевидного органического вещества и существенной примеси базальтового вулканокластического материала. Геохимические особенности этих осадков рассматривались выше. Подчеркнем, что они характеризуются наиболее высокими в данном разрезе содержаниями SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и ассоциирующих тяжелых металлов, поступление которых в значительной мере связано с базальтовой вулканокластикой, в меньшей мере — с гидротермально-эксгаляционной активностью, особенно в ранние интервалы (в первой половине позднего альба).

Накопление осадков, содержащих обломки мелководных моллюсков, рифовых построек, фрагментов вулканических аппаратов (базальтов, трахибазальтов и др.), происходило в начальную фазу (в позднем альбе) в обстановке относительно мелководного, по-видимому, котловинного бассейна со стагнированным режимом придонных вод, отличавшихся заметной гидродинамической активностью. Осадки носят отчетливые признаки турбидитов. Бассейн изобиловал островными вулканами, рифовыми банками и т.п.

Накопление осадков в таком быстро погружающемся бассейне характеризовалось весьма высокими скоростями аккумуляции главных компонентов и ассоциирующих металлов (см. рис. 17, табл. 21). Столь высокие темпы накопления обусловлены сочетанием трех факторов: 1) высоких скоростей седиментации в данном относительно мелководном бассейне, испытывающем прогрессивное погружение; 2) активного вулканогенного влияния, обусловившего сравнительно высокие содержания главных компонентов и связанных тяжелых металлов; поставку в бассейн значительных количеств базальтовой вулканокластики, в меньшей мере — гидротермальных, эксгаляционных продуктов; 3) интенсивной биологической продуктивности планктонной зоны бассейна, что связано как с близким к экватору положением этого района в данное время, так и с привносом питательных минеральных компонентов из вулканогенных источников. Высокая биологическая продуктивность этого сравнительно неглубокого бассейна находит отражение в аккумуляции значительных количеств сапропелевого органического вещества в карбонатных осадках.

Таким образом, начальный (раннеокеанский) этап развития южного района возвышенности Хесса отличался относительно выраженными геохимическими особенностями. Подобный геохимический этап с известной отчетливостью проявляется и в других районах Тихого океана (например, в западной части гор Маркус-Неккер — скв. 463, на возвышенности Шатского, в котловине Науру и др.), а также в Атлантическом и в Индийском океанах [Schlanger, Jenkyns, 1976; Arthur, Schlanger, 1979], охватывая различные по объему геохронологические интервалы мелового периода.

2-й этап — позднемеловой (средний сеноман-поздний маастрихт). Фаза: средний сеноман-средний турон (перерыв в седиментации). Седиментологическая сущность этого перерыва во многом остается неясной. Согласно некоторым модификациям модели, описывающей направленное к северу движение Тихоокеанской плиты [Lancelot, Larson, 1975; Lancelot, 1978; Andel, 1974], южный район возвышенности Хесса в течение сеномана-коньяка находился в экваториальной зоне высокой биологической продуктивности. Такое положение рассматриваемого района при справедливости принятого допущения, подтвержденного во многих участках северо-западной части Тихого океана, могло бы иметь своим следствием накопление весьма значительных количеств карбонатных осадков. Подчеркнем, что в течение всей мезозойско-кайнозойской истории седиментации южная часть возвышенности Хесса располагалась выше глубины карбонатной компенсации.

Можно полагать, что развитие этого перерыва, эродировавшего осадки, в данном районе связано с активизацией позднемеловых аналогов пассатных течений и их северозападных ветвей [Luyendyk et al., 1972].

Фаза: сантон. В течение этого времени накапливались наннофоссилиевые, фораминиферово-наннофоссилиевые илы с примесью кремнистых компонентов. Относительно сокращенные мощности и низкие скорости аккумуляции этих осадков позволяют рассматривать их как остаточное образование, сохранившееся после раннекампанского перерыва.

Фаза: ранний кампан (перерыв в седиментации). Можно полагать, что данная эрозионная фаза завершает позднемеловую серию перерывов, имеющих близкую природу (см. рис. 17).

Фаза: поздний кампан-поздний маастрихт. Это — заключительная фаза позднемеловой седиментации, в течение которой накапливались наннофоссилиевые, фораминиферовонаннофоссилиевые илы. Эти осадки характеризуются типичными для карбонатных пелагических разностей содержани, и главных компонентов и тяжелых металлов. Обращают на себя внимание относительно высокие скорости седиментации и накопления главных компонентов в южном районе возвышенности Хесса в течение раннего маастрихта (см. рис. 17 и табл. 21).

Как отмечалось выше, эти данные можно интерпретировать как свидетельство о том, что осадки раннего маастрихта не подвергались эрозионному воздействию и, следовательно, адекватно отражают темпы седиментации того времени. Вместе с тем допускается, что в течение раннего маастрихта южный район возвышенности Хесса еще не выходил за пределы северной границы приэкваториальной зоны высокой биологической продуктивности.

Лишь в позднем маастрихте исследуемый район был перемещен в северную олиготрофную зону Тихого океана. Однако относительно повышенная мощность (скорость аккумуляции) отложений раннего маастрихта в известной мере может быть обус-, ловлена локальным сносом, переотложением осадочного материала с блоков, поднявшихся в то время.

3-й этап — раннетратичный (ранний — поздний палеоцен). Начало третичного периода знаменуется накоплением наннофоссилиевых илов с малой примесью остатков радиолярий, кремнистых остатков, преобразованных в стяжения кремней. Как отмечалось, по содержанию главных компонентов и тяжелых металлов эти отложения мало отличаются от типичных биогенных карбонатных пелагических илов открытого океана. Обращают на себя внимание несколько повышенные скорости накопления Mn и P (см. табл. 21 и рис. 17), которые могут быть объяснены наличием заметных количеств тонкого вулканокластического материала базальтового состава. Имеющиеся геохимические данные, а также материалы по минералогоии и литологии этих осадков свидетельствуют, что в изучавшемся районе переход от мезозоя к кайнозою не был ознаменован сколько-нибудь резко выраженными изменениями геохимических параметров седиментации.

4-й этап — третичный—четвертичный. В течение эоцена—плиоцена фазы седиментации чередовались, по-видимому, с многочисленными перерывами. В конечном счете это привело к накоплению остаточных, переотложенных материалов резко сокращенной мощности [Initial Reports..., 1981].

В течение позднего плиоцена и плейстоцена накапливались фораминиферово-наннофоссилиевые илы с незначительной примесью кремнистых остатков и базальтового гиалопелитового—алевритового (до 10—15%) материала (в плейстоцене). Содержание главных компонентов и тяжелых металлов в исследованных осадках, скорости их накопления мало отличаются от того, что характерно для биогенных карбонатных пелагических илов открытого океана.

\* \* \*

Таким образом, изучение особенностей распределения, форм нахождения и аккумуляции главных компонентов и тяжелых металлов в разрезе мезозойских и кайнозойских отложений южной части возвышенности Хесса (скв. 465, 465А) позволяет наметить четыре главных этапа в геохимической истории седиментации района: 1) позднеальбский — раннесеноманский (протоокеанский); 2) позднемеловой (средний сеноман-поздний маастрихт); 3) раннетретичный (ранний-поздний палеоцен) и 4) третичный-четвертичный, отражающие эволюцию осадкообразования от обстановок относительно мелководного бассейна (поздний альб-ранний сеноман) к открытому океану (поздний мел — плейстоцен).

При изучении геохимии осадконакопления в районе западной части гор Маркус-Неккер (скв. 463) и северного района возвышенности Хесса (скв. 464) нами были установлены близкие по геохимической сущности этапы постюрской седиментации, однако их геохронологические объемы (особенно для мелового периода) существенно отличны при общей отчетливо выраженной тенденции эволюции.

#### ГЕОХИМИЧЕСКАЯ ИСТОРИЯ ПОСТЮРСКОЙ СЕДИМЕНТАЦИИ в южном районе возвышенности Хесса, СКВ. 466

Скв. 466 располагается в небольшой структурной депрессии южной части возвышенности Хесса (в северо-восточной части банки Меллиш), примерно в 50 км к северо-востоку от скв. 465 [Initial Reports..., 1981]. Такое положение разреза позволяет сравнительно оценить роль как региональных, так и локальных факторов в формировании осадков и особенностей их проявлений в различные этапы истории седиментации, в частности природу некоторых перерывов, фациальные изменения, темпы осадконакопления, выдержанность состава осадков и др.

### ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ КОМПОНЕНТОВ

Как уже отмечалось, парагенетические ассоциации химических компонентов выделяются в результате интерпретации данных факторного анализа с учетом материалов по изучению минералогии и геохимии.

# Ассоциации, выявляемые на основе данных химического анализа (табл. 22-24; рис. 18)

Ассоциация IA (+): SiO<sub>2</sub> (0,21), MgO (0,19), C<sub>орг</sub> (0,84), P (0,58), Cr (0,98), Ni (0,99), V (0,82), Cu (0,99), Pb (0,11), Ge (0,15), Mo (0,97). Она представлена базальтоидной вулканокластикой и продуктами ее переработки — магнезиальными смектитами, Скоторыми тесно связаны С<sub>орг</sub>, P и тяжелые металлы (Cr, Ni, V, Cu, Mo). Примечательна четкая локализация этой ассоциации в разрезе: верхнеальбские оливково-серые известняки, существенно обогащенные базальтовой вулканокластикой и сапропелевым органическим веществом (см. рис. 18).

Ассоциация IB (—): CaO (—0,33), Na<sub>2</sub>O (—0,78), K<sub>2</sub>O (—0,17), CO<sub>2</sub> (—0,27), Mn (—0,39). Преимущественно наннофоссилиевые, фораминиферовые остатки сложены карбонатом Са, с которым тесно связан Na, заимствованный из морской воды. Наличие Mn дает основание предполагать присутствие определенных количеств молекулы MnCO<sub>3</sub> как продукта постседиментационного преобразования осадков, вулканокластики, силикатной примеси и гидроокислов Mn.

Стратиграфическое распространение ассоциации ограничено серией I (нижний кампан-плейстоцен), представленной наннофоссилиевыми илами (см. рис. 18), сравнительно слабо измененными.

Ассоциация IIA (+): SiO<sub>2</sub> (0,89), AI<sub>2</sub>O<sub>3</sub> (0,84), MgO (0,61), Na<sub>2</sub>O (0,44), K<sub>2</sub>O (0,93) Fe (0,93), V (0,39), Pb (0,54), Ga (0,30), Ge (0,57). Эта ассоциация представлена глинистыми компонентами: иллитом и хлоритом с примесью монтмориллонита и каолинита. Примечательно, что распространение ассоциации в разрезе почти целиком соответствует развитию полиминеральной ассоциации глинистых компонентов (см. рис. 18): нижний плиоцен-плейстоцен.

Ассоциация IIB (—): CaO (—0,89), CO<sub>2</sub> (—0,89), Co (—0,42). Она представлена карбонатом Са с незначительной примесью Со, возможно в форме CoCO<sub>3</sub> (сферокобальтита), как эпигенетического продукта изменения вулканокластического материала.

Обращает на себя внимание развитие ассоциации в нижней части серии I, в тех интервалах разреза (нижний кампан—нижний плиоцен), где отмечается заметная перекристаллизация наннофоссилиевых илов (см. рис. 18). Количество перекристаллизованного кальцита в отложениях подсерии IB (84,0—245,5 м) составляет до 15%. Этот факт находит отражение в распределении величин плотностей [Initial Reports..., 1981]. Если для осадков подсерии IA (0—60 м), где данная группировка компонентов почти не наблюдается, среднее значение плотности составляет 1,48 ± 0,04 г · см<sup>-3</sup>, то для подсерии IB (60—250 м) как интервала доминирования этой ассоциации характерна более высокая средняя величина плотности: 1,59 ± 0,03 г · см<sup>-3</sup>. Важно отметить, что перекристаллизация биогенных карбонатных остатков носит неравномерный характер: интервалы распространения факторных группировок, соответствующих малоизмененным наннофоссилиевым илам (IB (—)) и продуктам их перекристаллизации (IIB (—)), в пределах подсерии IB перекрываются (см. рис. 18).

Таблица 22 Химический состав отложений мезозол и кайнозол ска, 466 (вес.% в пересчате на воздушию-сухую навеску)

| № обр.                  | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O, | CaO   | MgO  | MnO  | Na20 | К,0  | co,   | ; |
|-------------------------|------------------|--------------------------------|--------------------|-------|------|------|------|------|-------|---|
| 1-2-90-92               | 19,48            | 5,26                           | 1,74               | 36,06 | 1,23 | 0,04 | 2,28 | 1,34 | 27,55 |   |
| 2-4-64-66               | 9,58             | 2,78                           | 0,92               | 45,13 | 0,70 | 0,04 | 1,77 | 0,78 | 35,25 |   |
| 3-4-48-50               | 5,79             | 1,55                           | 0,65               | 49,23 | 0,35 | 0,02 | 1,22 | 0,51 | 38,15 |   |
| 4-1-21-23               | 8,49             | 2,56                           | 0,65               | 45,75 | 0,70 | 0,03 | 1,77 | 0,74 | 35,40 |   |
| 5-2-20-22               | 2,86             | 0.86                           | 0,22               | 51,91 | 0,18 | 0,04 | 1,44 | 0,36 | 40,30 |   |
| 6-6-40-42               | 11,42            | 3,23                           | 1,48               | 42,86 | 0,97 | 0,06 | 1,77 | 1,00 | 33,60 |   |
| 7 <b>66</b> 567         | 0,60             | 0,26                           | 0,26               | 54,01 | Нет  | 0,07 | 1,22 | 0,05 | 42,55 |   |
| 8-3-18-20               | 4,17             | 0,49                           | 0,49               | 51,12 | 0,62 | 0,21 | 0,87 | 0,33 | 41,80 |   |
| 9-3-20-22               | 2,22             | 0,64                           | 0,43               | 50,85 | 0,50 | 0,01 | 1,16 | 0,37 | 40,90 |   |
| 13-3-123-125            | 1,74             | 0.01                           | 0,13               | 54,04 | 0,33 | Нет  | 1,06 | 0,12 | 42,72 |   |
| 15-4-20-22              | 0,26             | Нет                            | 0,17               | 53,38 | 0,50 | "    | 1,16 | 0,16 | 43,30 |   |
| 16-2-22-24              | 0,60             | ••                             | 0,20               | 53,01 | 0,33 | 0,01 | 1,16 | 0,16 | 42,15 |   |
| 29-2-0-1                | 5,28             | 1,28                           | 0,44               | 42,03 | 0,33 | Нет  | 0,77 | 0,41 | 32,30 |   |
| 30-1-6 <del>9</del> -70 | 8,19             | 0,69                           | 0,50               | 43,59 | 1,33 | "    | 0,77 | 0,24 | 34,35 |   |
| 34-1-106-107            | 6,35             | 0,31                           | 0,52               | 45,91 | 0,91 | ••   | 0,61 | 0,24 | 36,60 |   |
| 35-1-59-60              | 6,35             | 0,31                           | 0,52               | 45,91 | 0,91 | ••   | 0,61 | 0,24 | 38,90 |   |
|                         |                  |                                |                    |       |      |      |      |      |       |   |

Таблица 23 Результаты фекторного анализа химических компонентов отложений мезозоя и кайнозоя скв. 466

| Компонент         | Фактор<br>вращен | ные нагруз<br>ния: | ки после   | Компонент                 | Факторные нагрузки после<br>вращения |           |            |  |
|-------------------|------------------|--------------------|------------|---------------------------|--------------------------------------|-----------|------------|--|
|                   | Фактор I         | Фактор II          | Фактор III |                           | Факторі                              | Фактор II | Фактор III |  |
| SiO,              | 0,21             | 0,89               | 1 1        | Cr                        | 0,98                                 | 0,08      |            |  |
| AI, 0,            | 0,05             | 0,84               | 0,36       | Ni                        | 0,99                                 | 0,08      |            |  |
| CaO               | -0,33            | -0,89              |            | V                         | 0,82                                 | 0,39      |            |  |
| MgO               | 0,19             | 0,61               | 0,42       | Cu                        | 0,99                                 | 0,08      |            |  |
| Na <sub>2</sub> O | -0,78            | 0,44               |            | Co                        | -0,03                                | -0,42     |            |  |
| κ,ο               | -0,17            | 0,93               |            | Pb                        | 0,11                                 | 0,54      | -0,36      |  |
| cō,               | -0,27            | -0,89              |            | Ga                        |                                      | 0,30      |            |  |
| Copr              | 0,84             | 0,15               |            | Ge                        | 0,15                                 | 0,57      | -0,34      |  |
| Fe                | 0,01             | 0,93               |            | Мо                        | 0,97                                 | 0,09      |            |  |
| Mn                | -0,39            | 0,17               | 0,83       | Вклад в дис-              | 39.58                                | 24.46     | 8.84       |  |
| P                 | 0,58             |                    | 0,69       | персию.%                  | ,                                    | ,         | -,         |  |
|                   |                  |                    |            | Суммарная<br>дисперсия, % | 39,58                                | 64,04     | 72,88      |  |

Ассоциация IIIA (+):  $AI_2O_3$  (0,36), Mn (0,83), P (0,69). Минеральная природа данной группировки не очевидна. Можно считать, что ассоциация представлена рассеянными, остаточными (после растворения тонкой базальтовой вулканокластики) гидроокислами Mn, с которыми связаны P и  $AI_2O_3$ . Этот вывод находит подтверждение как в относительно повышенных содержаниях Mn и других компонентов (см. табл. 22) для интервалов развития ассоциации (обр. 7–6–65–67 и 8–3–18–20), так и в усилении буроватой окрашенности этих осадков [Initial Reports..., 1981].

Примечательна локализация этой группировки в разрезе: относительно крупные величины факторных нагрузок наблюдаются близ границы перерыва поздний эоцен-пли-

| 1 |      |                |                   |                   |        |      |      |     |      | 7·10⁻⁴ |      |    |     |      |
|---|------|----------------|-------------------|-------------------|--------|------|------|-----|------|--------|------|----|-----|------|
|   | С    | $C   P_2O_5  $ | Ге <sub>вал</sub> | Мп <sub>вал</sub> | Рзал   | Cr   | Ni   | v   | Cu   | Co     | РЬ   | Ga | Ge  | Мо   |
| - |      | 0.09           | 1 22              | 0.03              | 0.04   | 10   | <10  | 30  | < 20 | < 10   | 11   | <5 | <1  | <15  |
|   | "    | 0.04           | 0.64              | 0.03              | 0,03   | < 10 | <10  | 16  | <20  | < 10   | < 10 | <5 | <1  | <1.5 |
|   | ••   | 0.05           | 0 45              | 0.02              | 0.02   | <10  | <10  | <15 | <20  | <10    | <10  | <5 | <1  | <1.5 |
|   | 4 71 | 0.04           | 0.45              | 0.02              | 0.02   | <10  | <10  | <15 | < 20 | < 10   | <10  | <5 | <1  | <1.5 |
|   | Нет  | 0.06           | 0.15              | 0.03              | 0.03   | <10  | <10  | <15 | < 20 | < 10   | <10  | <5 | <1  | <1.5 |
|   | ,,   | 0.14           | 1.04              | 0.05              | 0.06   | <10  | < 10 | <15 | < 20 | <10    | <10  | <5 | <1  | <1.5 |
|   |      | (0.16)         | .,                | 0,00              | (0.07) |      |      | ~   | 120  |        |      |    | ••• |      |
|   |      | 0.14           | 0.18              | 0.05              | 0.06   | <10  | <10  | <15 | <20  | <10    | <10  | <5 | <1  | <1.5 |
|   |      | 0.41           | 0.34              | 0.16              | 0.18   | <10  | <10  | <15 | <20  | <10    | <10  | <5 | <1  | <1.5 |
|   |      | 0.12           | 0.30              | 0.01              | 0.05   | <10  | <10  | <15 | <20  | <10    | <10  | <5 | <1  | <1.5 |
|   | "    | 0.02           | 0.09              | Нет               | 0.01   | <10  | <10  | <15 | <20  | <10    | <10  | <5 | <1  | <1.5 |
|   |      | 0.04           | 0.12              |                   | 0.02   | <10  | <10  | <15 | <20  | <10    | <10  | <5 | <1  | <1.5 |
|   | .47  | 0.04           | 0.14              | 0.01              | 0.02   | <10  | <10  | <15 | <20  | <10    | <10  | <5 | <1  | <1.5 |
|   | 7.31 | 0.21           | 0.31              | Нет               | 0.09   | 40   | 47   | 210 | 50   | <10    | <10  | <5 | <1  | 8.5  |
|   | 3.81 | 0.25           | 0.35              | **                | 0.11   | 37   | 34   | 69  | 41   | <10    | <10  | <5 | <1  | 4.5  |
|   | 3.21 | 0.15           | 0.36              | .,                | 0.07   | 28   | 24   | 49  | 38   | <10    | <10  | <5 | <1  | 3,1  |
|   | 2,91 | 0,13           | 0,36              |                   | 0,07   | 17   | 23   | 50  | 36   | <10    | <10  | <5 | <1  | 3,0  |
|   |      | -              | •                 |                   | •      |      |      |     |      |        |      |    |     |      |

### Таблица 24

#### Стратиграфическое распределение значений факторов для химических компонентов отложений мезозоя и кайнозоя ске. 466

|              |                                         | Факторные значения после вращения |               |                    |  |  |  |  |
|--------------|-----------------------------------------|-----------------------------------|---------------|--------------------|--|--|--|--|
| № обр.       | Стратиграфическое<br>подразделение      | Фактор I                          | Фактор II     | Фактор III<br>0,25 |  |  |  |  |
| 1-2-90-92    | і — — — — — — — — — — — — — — — — — — — | 0,61                              | 2,16          |                    |  |  |  |  |
| 2-4-64-66    | **                                      | 0,86                              | . 1,06        | 0,03               |  |  |  |  |
| 3-4-48-50    | Верхний плиоцен                         | -0,66                             | 0,28          | -0,66              |  |  |  |  |
| 4-1-21-23    | Тоже                                    | -0,51                             | 0,66          | 0,52               |  |  |  |  |
| 5-2-20-22    | Нижний плиоцен                          | -0,63                             | -0,42         | 0,50               |  |  |  |  |
| 6-6-40-42    | То же                                   | 0,75                              | 1,39          | 0,83               |  |  |  |  |
| 7-6-65-67    | **                                      | -0,33                             | -1,59         | 2,05               |  |  |  |  |
| 8-3-18-20    | Верхний зоцен                           | 0,28                              | 0,25          | 2,23               |  |  |  |  |
| 9-3-20-22    | Тоже                                    | 0,52                              | 0,02          | -0,25              |  |  |  |  |
| 13-3-123-125 | Верхний кампан                          | -0,57                             | 1,06          | 1,65               |  |  |  |  |
| 15-4-20-22   | Тоже                                    | -0,49                             | -1,23         | -1,38              |  |  |  |  |
| 16-2-22-24   | Нижний кампан                           | 0,49                              | -1,44         | -0,28              |  |  |  |  |
| 29-2-0-1     | Верхний альб                            | 2,31                              | 0,43          | 0,22               |  |  |  |  |
| 30-1-69-70   | Тоже                                    | 1,83                              | 0,11          | 0,06               |  |  |  |  |
| 34-1-106-107 | **                                      | 1,39                              | 0,05          | -0,32              |  |  |  |  |
| 35-1-59-60   | **                                      | 1,16                              | -0, <b>09</b> | -0,41              |  |  |  |  |

оцен, что также может свидетельствовать в пользу остаточной природы этих компонентов.

Ассоциация IIIB (–): MgO (–0,42), Pb (–0,36), Mo (–0,34). Она представлена магнезиальным монтмориллонитом и связанными тяжелыми металлами, развивавшимися по гиалопелитовой – алевритовой базальтоидной вулканокластике. В образцах с относительно высокими значениями факторных нагрузок (обр. 13–3–123–125 и 15–4–20–22) вулканогенная природа глинистых компонентов достаточно определенна. Обращает на себя внимание локализация этих образцов в разрезе близ границы перерыва ранний

| ратиграфи-<br>ческие<br>дразделения | KIND BJ                                                                                                                                               | KEPHBI                                                                                                                                                                                                                                          | "<br>vunghuj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Su sataga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | анали-<br>ванны<br>стали-<br>ванны<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>стали-<br>ста | Глинистье<br>компонен-<br>ты                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | № <i>обр</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Плейстоцен                          |                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ᡏ᠋᠇᠇ᢩᠵᠵ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-2-90-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | , ă                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-4-6466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| верхний                             | 99                                                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┷┷┷┶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ┶┶╧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-4-48-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| плиоцен                             | in l                                                                                                                                                  |                                                                                                                                                                                                                                                 | 4,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ┺┰┺┰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ┺┸┲╝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-1-21-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 3.                                                                                                                                                    | 6-                                                                                                                                                                                                                                              | ۳Ŷ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L_L_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ┷ <sub>」</sub> ヱ <u></u> ू″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-2-20-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ПЦЖНЦИ<br>ПЛЦОЦВН                   | 500                                                                                                                                                   | -                                                                                                                                                                                                                                               | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-6-40-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | 602                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-6-65-67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Велтний                             | iu a                                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8-3-18-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| JOYEN                               | <u>۶</u>                                                                                                                                              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9-3-20-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Верхний                             | 8 112                                                                                                                                                 |                                                                                                                                                                                                                                                 | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{4}$ , $\frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13-3-123-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KÄMNAH                              | 1000 C                                                                                                                                                | F I                                                                                                                                                                                                                                             | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ┝┰╪┲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15-4-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Нижний<br>кампан                    | ACC ACC                                                                                                                                               | 2                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┢┷╌┷┶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16-2-22-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Коньяк —<br>нижний<br>сантон        |                                                                                                                                                       | 17-<br>28                                                                                                                                                                                                                                       | 141,0-255,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | нет<br>образцов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | 1 63 8                                                                                                                                                |                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29-2-0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| верхний                             |                                                                                                                                                       | 39                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1- 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-1-69-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| альв                                |                                                                                                                                                       | d d                                                                                                                                                                                                                                             | ုင္ပံုိ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ╞┽┸┿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34-1-106-107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                     | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                              |                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35-1-59-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                     | ратиерафи-<br>ческие<br>Плейстоцен<br>Верхний<br>плиоцен<br>Нижний<br>плиоцен<br>Верхний<br>берхний<br>Коньяк-<br>пижний<br>сантон<br>Верхний<br>альб | ратиерафи-<br>ческие<br>празделения<br>Плейстоцен<br>Верхний<br>плиоцен<br>Нижний<br>плиоцен<br>Верхний<br>зоцен<br>Верхний<br>Кампан<br>Нижний<br>подорон<br>Кампан<br>Конояк –<br>пижний<br>Сантон<br>Верхний<br>Конояк –<br>пижний<br>Сантон | ратиграфи-<br>ческие<br>Аразделения<br>Плейстоцен<br>Нижний<br>плиоцен<br>Нижний<br>плиоцен<br>Верхний<br>зоцен<br>Верхний<br>зоцен<br>Сарына<br>Коняк-<br>подестива<br>Сарына<br>Коняк-<br>подестива<br>Сарына<br>Коняк-<br>подестива<br>Сарына<br>Коняк-<br>сстива<br>Сарына<br>Коняк-<br>сстива<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Коняк-<br>Сарына<br>Сарына<br>Коняк-<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарына<br>Сарын | ашперафп-<br>леские<br>уразувеления<br>Сврыи<br>Сврыи<br>Пливадо-<br>Сврыи<br>Пливадо-<br>Сврыи<br>Пливадо-<br>Сврия<br>Пливадо-<br>Сврия<br>Пливадо-<br>Сврия<br>Пливадо-<br>Паннофос-<br>Паннофос-<br>Паннофос-<br>Паннофос-<br>Паннофос-<br>Паннофос-<br>Сврия<br>Пливадо-<br>Сврия<br>Пливадо-<br>Паннофос-<br>Паннофос-<br>Сврия<br>Пливадо-<br>Паннофос-<br>Сврия<br>Пливадо-<br>Сврия<br>Пливадо-<br>Паннофос-<br>Сврия<br>Плива<br>Пливадо-<br>Сврия<br>Плива<br>Пливадо-<br>Сврия<br>Плива<br>Плива<br>Плива<br>Плива<br>Плива<br>Сврия<br>Плива<br>Сврия<br>Плива<br>Сврия<br>Сврия<br>Сврия<br>Плива<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Состоневый<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сврия<br>Сври | ашперафп-<br>леские<br>разделения<br>Шивавро-<br>леские<br>вероит<br>илионарос-<br>понного-<br>или понен<br>и илионарос-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного-<br>понного                                                                                                                                                                                                       | Верхний<br>латерации<br>уразделения<br>подрог<br>Верхний<br>планондог<br>подрог<br>Пливадо-<br>сариа<br>Пливадо-<br>сариа<br>Пливадо-<br>подрог<br>Пливадо-<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>подрог<br>под<br>под<br>под<br>под<br>под<br>под<br>под<br>под<br>под<br>под | ашперафп-<br>леские<br>разделения<br>изарошение<br>верени<br>и изаропен-<br>повние<br>и изаропен-<br>повние<br>и изаропен-<br>и саншан<br>и изаропен-<br>и изароп |

1 XXXXX 2 XXXX 3 AAAA 4 XXXXX 5

Рис. 18. Стратиграфическое распределение факторных значений для химических компонентов мезозойских и кайнозойских отложений скв. 466

Глинистые компоненты (к рис. 18—19): 1 — полиминеральная ассоциация с иллитом, хлоритом, примесью монтмориллонита и каолинита; 2 — полиминеральная ассоциация: иллит с примесью хлорита и смешаннослойной фазы типа монтмориллонит-иллит; 3 — смешаннослойной фазы типа монтмориллонит и тридимит; 5 — Fe-монтмориллонит с опалом (C-T) и примесью смешаннослойной фазы монтмориллонит-иллит; (M-i)

Литология - см. на рис. 2

маастрихт—средний зоцен. Примерно в данном стратиграфическом интервале наблюдаются рассеянные обломки, гальки щелочных базальтов, эродированные с поднявшихся в это время блоков [Initial Reports..., 1981]. Такое положение этих осадков способствовало глубокому изменению вулканокластического материала (см. рис. 18).

## Ассоциации, выявляемые на основе данных химического анализа, пересчитанных на БТККВ (табл. 25–27; рис. 19)

Ассоциация IA(+): MgO (0,35), Fe(0,51), Mn (0,72). Избыточные количества данных компонентов присутствуют в форме полиминеральных глин, главным образом хлорита, монтмориллонитовых фаз, сформировавшихся по базальтоидной вулканокластике. Распространение этой ассоциации весьма близко к тому, что отмечалось для рассмотренной выше (см. рис. 18) группировки IIA (+), представленной полиминеральными глинистыми компонентами (верхний плиоцен-плейстоцен).

Ассоциация IB (-): P(-0,72), Cr(-0,94), Ni(-0,95), V(-0,97), Cu(-0,98), Co(-0,85), Pb(-0,85), Ga(-0,86), Ge(-0,86), Mo(-0,90). Избыточные количества P и связанных тяжелых металлов представлены преимущественно базальтовой вулканокластикой и продуктами ее изменения.

Относительно большие величины факторных значений этой группировки наблюдаются для отложений позднего альба (см. рис. 19), в которых содержание базальтовых

| Факторные значения ассоциации после вращения |                                                       |                 |                 |                 |                 |  |  |  |  |  |  |
|----------------------------------------------|-------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|--|
| IA(+)                                        | IB(_)                                                 | ПА(+)           | ПВ(-)           | 11A(+)          | ШB()            |  |  |  |  |  |  |
| 0,5 1,0 1,5 2,0                              | 0,5 1,0 1,5 2,0                                       | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0 |  |  |  |  |  |  |
|                                              | 1. 1. 6.<br>2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |                 |                 |                 |                 |  |  |  |  |  |  |
|                                              |                                                       |                 |                 |                 |                 |  |  |  |  |  |  |
|                                              |                                                       | 8               |                 |                 |                 |  |  |  |  |  |  |
|                                              | S.                                                    |                 | L               |                 |                 |  |  |  |  |  |  |
|                                              |                                                       |                 |                 | <b>KX</b>       | L               |  |  |  |  |  |  |
|                                              | . 8                                                   |                 | <u> </u>        |                 |                 |  |  |  |  |  |  |
|                                              |                                                       | 4               |                 |                 |                 |  |  |  |  |  |  |
|                                              |                                                       |                 |                 |                 |                 |  |  |  |  |  |  |
|                                              |                                                       |                 | L               |                 |                 |  |  |  |  |  |  |
|                                              |                                                       | L               |                 | L               |                 |  |  |  |  |  |  |
|                                              | -                                                     | <b>.</b>        |                 | <b></b>         |                 |  |  |  |  |  |  |
|                                              |                                                       | L               |                 |                 | <b>M</b>        |  |  |  |  |  |  |
|                                              |                                                       |                 |                 |                 |                 |  |  |  |  |  |  |
| <u> </u>                                     |                                                       |                 | +               | 18              | 1               |  |  |  |  |  |  |
| AIIIIIIA                                     |                                                       | 8               | 1               | Τ               |                 |  |  |  |  |  |  |
|                                              |                                                       |                 |                 |                 |                 |  |  |  |  |  |  |
|                                              |                                                       |                 | 1               |                 |                 |  |  |  |  |  |  |



вулканокластических составляющих и глинистых продуктов, развитых по ним, достигает 20—30%.

Ассоциация IIA (+): CaO (0,74), MgO (0,78), Fe (0,70), Mn (0,48), Mo (0,14). Избыточные количества компонентов ассоциации представлены главным образом Ca, Mg, Feмонтмориллонитовой фазой, с которой связаны Mn и Mo и которая развита по базальтовой вулканокластике. Данные о минеральном составе образцов с относительно высокими факторными значениями этой группировки (см. табл. 27 и рис. 19) подтверждают состоятельность этого вывода (обр. 3–4–48–50 и 29–2–0–1).

Ассоциация IIB (-): Na<sub>2</sub>O (-0,86), Co (-0,40), Pb (-0,41). Ga (-0,34), Ge (-0,32). Рассматриваемая группировка является антагонистичной относительно ассоциации IIA (+). Имеющиеся данные позволяют считать, что она представлена преимущественно

Таблица 25 Химический состав отложений мезозол и кайнозолскв. 466 (вес.% в пересчете на БТККВ)

| ₩ обр.              | CaO    | MgO    | Na <sub>2</sub> O | К₂О    | Fе <sub>вал</sub> | Мп <sub>вал</sub> . | Р <sub>вал</sub> |
|---------------------|--------|--------|-------------------|--------|-------------------|---------------------|------------------|
| 1-2-90-92           | 0,109  | 17,505 | 55,793            | 16,631 | 9,039             | 0,328               | 0,546            |
| 2—4—64—66           | Нет    | 14,786 | 62,526            | 14,976 | 6,462             | 0,798               | 0,342            |
| 3-4-48-50           | 28,079 | 15,021 | 12,802            | 25,177 | 16,045            | 1,280               | 1,195            |
| 4-1-21-23           | 8,755  | 15,672 | 56,040            | 15,171 | 3,409             | 0,434               | 0,401            |
| 5-2-20-22           | 17,962 | 3,849  | 64,197            | 10,997 | 0,229             | 1,237               | 1,237            |
| 6-6-40-42           | Нет    | 25,690 | 26,408            | 23,281 | 20,873            | 1,648               | 1,986            |
| 7—6—65—67           | "      | Нет    | 87,813            | 1,018  | 6,324             | Нет                 | 4,289            |
| 8-3-18-20           | "      | "      | 65,469            | 20,227 | Нет               | "                   | 13.742           |
| 9-3-20-22           | "      | "      | 77,110            | 19,158 |                   | "                   | 3.273            |
| 13-3-123-125        | "      | 4,693  | 84,311            | 9,545  | **                | "                   | 0.795            |
| 15-4-20-22          | "      | Нет    | 86,037            | 11,867 | **                | .,                  | 1.483            |
| 16-2-22-24          | "      | "      | 86,037            | 11,867 |                   | "                   | 1,483            |
| 29-2-0-1            | 32,031 | 9,448  | 35,972            | 11,721 | 4,749             | **                  | 4,295            |
| 30—1— <b>69</b> —70 | Нет    | 54,348 | 32,053            | 6.246  | 1,822             | ••                  | 4.684            |
| 34-1-106-107        | "      | 40,952 | 40,078            | 13,247 | Нет               |                     | 4,640            |
| 35-1-59-60          | "      | Нет    | 68,760            | 22,728 | **                | "                   | 6.807            |

#### Таблица 26

Результаты факторного анализа жимических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 466

| Компонент                                                                                   | Фактор<br>врещен                                             | жые нагру:<br>ия                     | зки после            | Компонент                                                                               | Факторные нагрузки после<br>врещения                           |                                                        |               |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|----------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|---------------|--|
|                                                                                             | Факторі                                                      | Фактор II                            | Фактор III           |                                                                                         | Фактор I                                                       | Фактор II                                              | Фактор III    |  |
| CaO<br>MgO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O<br>Fe<br>Mn<br>P<br>Cr<br>Cr<br>Ni<br>V | 0,07<br>0,35<br>0,51<br>0,72<br>0,72<br>0,94<br>0,95<br>0,97 | 0,74<br>0,78<br>0,86<br>0,70<br>0,48 | 0,91<br>0,33<br>0,30 | Си<br>Со<br>Рb<br>Ga<br>Ge<br>Мо<br>В клад в<br>дисперсию,%<br>Суммарная<br>дисперсия,% | 0,98<br>0,85<br>0,85<br>0,86<br>0,86<br>0,90<br>62,30<br>62,30 | 0,40<br>0,41<br>0,34<br>0,32<br>0,14<br>17,79<br>80,09 | 7,91<br>88,00 |  |

Na-монтмориллонитом как продуктом изменения основной вулканокластики. Характерна локализация этой ассоциации в разрезе: она развита преимущественно близ границ относительно крупных перерывов (поздний альб—ранний кампан; поздний кампан поздний зоцен; поздний зоцен—ранний плиоцен).

Ассоциация IIIA (+): К<sub>2</sub> O (0,91), Мп (0,30). Гидрослюдистые компоненты присутствуют в форме как иллита, так и отдельных пакетов в смешаннослойных фазах гидрослюда-монтмориллонит. Стратиграфическое распространение этой группировки во многом подобно развитию в разрезе ассоциаций IIA (+) и IIB (—) (см. рис. 19), которые представлены Ca, Mg, Fe-монтмориллонитом и его натриевой разностью. Эти данные косвенно указывают на преобладание смешаннослойных образований над собственно иллитом, что не противоречит результатам рентгеноструктурных иследований глинистой фракции.

Ассоциация IIIB (-): Fe (-0,33). Она представлена избыточными количествами гид-

|   | Cr    | Ni    | v     | Cu    | Co    | Pb    | Ga    | Ge    | Мо    |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| _ | Het I | Нет   | Нет   | 0,014 | 0,014 | 0,016 | Нет   | 0,001 | 0.003 |
|   | "     | "     | "     | 0,046 | 0,027 | 0.027 | 0.004 | 0.003 | 0.005 |
|   | 0,017 | 0,026 | 0,043 | 0,137 | 0,068 | 0,068 | 0,026 | 0,007 | 0.011 |
|   | Нет   | Нет   | 0,003 | 0,047 | 0,027 | 0.027 | 0.007 | 0.003 | 0.009 |
|   | 0,027 | 0,027 | 0,041 | 0,082 | 0.041 | 0.041 | 0.018 | 0.004 | 0.006 |
|   | Нет   | Нет   | Нет   | 0,046 | 0,030 | 0.030 | Нет   | 0.003 | 0.005 |
|   | 0,065 | 0,065 | 0,095 | 0,138 | 0,071 | 0.071 | 0.033 | 0.007 | 0.011 |
|   | 0,062 | 0,062 | 0,093 | 0,147 | 0,073 | 0.073 | 0.033 | 0.007 | 0.011 |
|   | 0,048 | 0,048 | 0,075 | 0,123 | 0,061 | 0.061 | 0.027 | 0.006 | 0.010 |
|   | 0,080 | 0,080 | 0,119 | 0,159 | 0.080 | 0.080 | 0.040 | 0.008 | 0.012 |
|   | 0,074 | 0,074 | 0,111 | 0,148 | 0,074 | 0.074 | 0.037 | 0.007 | 0.011 |
|   | 0,074 | 0,074 | 0,111 | 0,148 | 0,074 | 0.074 | 0.037 | 0.007 | 0.011 |
|   | 0,172 | 0,207 | 1,021 | 0.232 | 0.045 | 0.045 | 0.015 | 0.005 | 0.042 |
|   | 0,147 | 0,134 | 0,278 | 0,169 | 0.039 | 0.039 | 0.017 | 0.004 | 0.019 |
|   | 0,175 | 0,155 | 0,316 | 0,249 | 0,065 | 0.065 | 0.030 | 0.007 | 0.021 |
|   | 0,173 | 0,254 | 0.554 | 0.404 | 0.112 | 0.112 | 0.052 | 0.011 | 0.034 |

### Таблица 27

#### Стратиграфическое распределение значений фекторов, для химических компонентов (в пересчете на БТККВ) отложений мезозол и кайнозол скв. 466

|               | Стратиграфическое   | Факторные значения после вращенин |           |            |  |  |  |  |  |
|---------------|---------------------|-----------------------------------|-----------|------------|--|--|--|--|--|
| № обр.        | подрезделение       | Фактор I                          | Фактор II | Фактор III |  |  |  |  |  |
| <br>1_2_90_92 | і — і<br>Плейстоцен | 2,21                              | 0,20      | 0,52       |  |  |  |  |  |
| 246466        |                     | 1,60                              | 0,22      | 0,18       |  |  |  |  |  |
| 3-44850       | Верхний плиоцен     | -0,61                             | 1,97      | 1,54       |  |  |  |  |  |
| 4-1-21-23     | Тоже                | 1,13                              | 0,61      | 0,23       |  |  |  |  |  |
| 5-2-20-22     | Нижний плиоцен      | 0,27                              | 0,50      | 0,02       |  |  |  |  |  |
| 6-6-40-42     | Тоже                | 1,31                              | 0,57      | 0,71       |  |  |  |  |  |
| 7-6-65-67     | **                  | -0,26                             | -0,77     | -2,80      |  |  |  |  |  |
| 8-3-18-20     | Верхний зоцен       | -0,48                             | -0,95     | 0,68       |  |  |  |  |  |
| 9-3-20-22     | То же               | -0,12                             | -1,13     | 0,57       |  |  |  |  |  |
| 13-3-123-125  | Верхний кампан      | 0,38                              | -0,75     | 0,11       |  |  |  |  |  |
| 15-4-20-22    | Тоже                | -0.26                             | -1,23     | 0.26       |  |  |  |  |  |
| 16-2-22-24    | Нижний кампан       | 0.26                              | -1,23     | 0.26       |  |  |  |  |  |
| 29-2-0-1      | Верхний альб        | -1,20                             | 1,81      | 0.86       |  |  |  |  |  |
| 30-1-69-70    | Тоже                | -0.61                             | 0,96      | -1.51      |  |  |  |  |  |
| 34-1-106-107  |                     | -0,97                             | 0.30      | 0,15       |  |  |  |  |  |
| 35-1-59-60    | **                  | -1.34                             | -0.63     | 1.00       |  |  |  |  |  |

роокислов Fe, сформировавшихся в общем процессе изменения базальтовой вулканокластики. Отсутствие в составе группировки тажелых, переходных металлов, которые, как можно было бы ожидать, должны быть связаны с таким активным поглотителем, косвенно свидетельствует об относительно позднем, эпигенетическом формировании этой фазы. Примечательна локализация группировки гидроокислов Fe близ границ относительно крупных перерывов (см. рис. 19).

| Стр<br>под | ратиграфи–<br>ческие<br>разделения | серия                                    | Керны     | Глубина,<br>м   | Suma<br>Suma<br>Suma | ana nu-<br>supo -<br>banno -<br>obogs<br>uob | сты<br>Кампонен-<br>Паинистые | № <i>обр.</i>      |  |           |
|------------|------------------------------------|------------------------------------------|-----------|-----------------|----------------------|----------------------------------------------|-------------------------------|--------------------|--|-----------|
|            | Плейстриен                         |                                          |           |                 | 守                    | ᡅᠴᡗ᠅                                         |                               | 1-2-90-92          |  |           |
| 2          |                                    | , ji                                     |           |                 | ┶⊥┷⊥                 | +                                            |                               | 2-4-64-66          |  |           |
| 0          | Верхний                            | el                                       |           |                 | ┶ᠴ┶ᠴ                 | ┶┶╧╴                                         |                               | 3-4-48-50          |  |           |
| 2          | Плоцен                             | 101                                      |           | 34,0            | <u>+_+</u>           | ┺┰┺┋                                         |                               | 4-1-21-23          |  |           |
| 20         | Нимений                            | 25                                       | Ĩ         | Ĩ               | ┶ <u>┶┶</u> ┷        | ┶⊥ઽ┽╣                                        |                               | 5-22022            |  |           |
| 22         | плиацен                            | 00                                       |           | ő               | ┶ <u>┶┶</u> ┶        | <u>+_</u> _Z                                 |                               | 6-6-40-42          |  |           |
| 0          |                                    | 044                                      |           |                 |                      |                                              | ┶╻┶╸                          |                    |  | 7-6-65-67 |
| <b>1</b>   | Верхний                            | Har                                      |           |                 |                      |                                              | $\infty \infty \infty$        | 8-3-18-20          |  |           |
|            | 30461                              |                                          |           |                 |                      |                                              |                               | 9-3-20-22          |  |           |
|            | Верхний                            | 11                                       | 9         | 0,              | ┶╷┷╅                 |                                              | XXXXX                         | 13-3-123-125       |  |           |
|            | кампан                             | 10/10/10/10/10/10/10/10/10/10/10/10/10/1 | Ī         | -0 <sup>1</sup> | ┶┶╧                  |                                              | $\times \times \times$        | 15-4-20-22         |  |           |
| <i>,</i> , | Нижний<br>кампан                   | d' bo                                    | 2         | 84              | ▲▲▲                  |                                              |                               | 16-2-22-24         |  |           |
| 000        | Коньяк-<br>нижний<br>сантон        |                                          | 17-<br>28 | 141,0-          | ┥┥<br>┥┥╸<br>┥       |                                              |                               | Нет образцов       |  |           |
| 9          |                                    | 6 635                                    |           | 2,0             | 1-1-1                |                                              |                               | 29-2-0-1           |  |           |
| 10         | Верхний                            |                                          | 35        | 315             |                      | 上沢                                           |                               | <b>30-1-69-</b> 70 |  |           |
| ₹          | альб                               | 190                                      | 8         | 0               |                      | 1.84                                         |                               | 34-1-106-107       |  |           |
|            |                                    |                                          |           | 25              |                      |                                              |                               | 35-1-59-60         |  |           |

Рис. 19. Стратиграфическое распределение факторных значений для химических компонентов (вес.% в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 466

Глинистые компоненты - см. на рис. 18, литология - на рис. 2

# СРЕДНИЕ СОДЕРЖАНИЯ И СКОРОСТИ АККУМУЛЯЦИИ КОМПОНЕНТОВ (ТАБЛ. 28; РИС. 20-22)

Распределение средних содержаний. Близость нахождения скв. 466, а также 465, 465А в существенной мере сказывается на общности главных особенностей литологического, минерального и химического составов, что с определенностью проявляется в распределении средних содержаний в разрезе (см. рис. 20).

Наблюдаемые различия связаны не столько с отличиями региональных условий седиментации, сколько с локальными особенностями истории развития этих участков: блоковыми подвижками, вскрытием местных источников питания седиментационным материалом, эродируемых участков, переотложением осадков в ограниченные, локально образовавшиеся впадины и др. Наиболее четко локальные особенности развития находят отражение в литолого-геохимической выраженности и геохронологической амплитуде перерывов в седиментации.

1-й этап — поздний альб (раннеокеанский), также как в разрезе скв. 465 и 465А, характеризуется осадками со сравнительно высокими концентрациями SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, P, C<sub>орг</sub> и ассоциирующих тяжелых металлов (см. рис. 20 и 21). Обращает на себя внимание крайне низкое содержание Мп и относительно повышенное количество нормативных молекул FeCO<sub>3</sub> и MgCO<sub>3</sub>, что связано с эпигенетическим преобразованием мафического вулканогенного материала.

Относительно высокие содержания MgO и K<sub>2</sub>O (в пересчете на БТККВ; см. рис. 21) можно интерпретировать как косвенное свидетельство существенной роли исходного материала вулканокластики трахибазальтового состава, частично измененного в смектит-гидрослюдистые компоненты.

2-й этап — поздне меловой (поздний турон—маастрихт) весы мафрагментарно охарактеризован керновым материалом и соответственно химическими анализами. Обращает на себя внимание сравнительно низкое содержание в осадках

| \$              | Факторные значения ассоциации после вращения |                 |              |              |                 |  |  |  |  |  |  |  |  |
|-----------------|----------------------------------------------|-----------------|--------------|--------------|-----------------|--|--|--|--|--|--|--|--|
| IA(+)           | IB(_)                                        | 11A(+)          | <u>П</u> В() | ШA(+)        | ШB()            |  |  |  |  |  |  |  |  |
| 0,5 1,0 1,5 2,0 | 0,5 1,0 1,5 2,0                              | 0,5 1,0 1,5 2,0 | 0,51,01,52,0 | 0,51,01,52,0 | 0,5 1,0 1,5 2,0 |  |  |  |  |  |  |  |  |
|                 |                                              | *               | 1            |              |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              | 8            |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              |              |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              | ×            |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              |              |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              | <u> </u>     |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              |              | 280             |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              | XXX          |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              |              |                 |  |  |  |  |  |  |  |  |
|                 |                                              | · · · · ·       |              | R            |                 |  |  |  |  |  |  |  |  |
|                 |                                              | ļ               |              | 8            |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              | Ø            |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              |              |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 | 1            | 1            |                 |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              | Ι            |                 |  |  |  |  |  |  |  |  |
|                 |                                              | <b>XX</b>       |              |              | . 1             |  |  |  |  |  |  |  |  |
|                 |                                              |                 |              | 88888        |                 |  |  |  |  |  |  |  |  |



этого этапа алюмосиликатных компонентов (в осадках кампана Al<sub>2</sub>O<sub>3</sub> нет) и повышенное количество нормативной молекулы MgCO<sub>3</sub>, свидетельствующее о заметной эпигенетической преобразованности карбонатного материала (см. рис. 20).

3-й этап — третичный —четвертичный представлен отложениями, сохранившимися после двух крупных эрозионных перерывов (поздний маастрихт средний эоцен; ранний олигоцен — поздний миоцен), и более молодыми осадками. Они характеризуются резким доминированием карбонатных наннофоссилиевых разностей с заметной примесью базальтоидной вулканокластики, наличие которой проявляется также в повышенных количествах Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P. В базальных осадках позднего эоцена (см. рис. 20) наблюдаются значительные количества нормативных молекул MnCO<sub>3</sub>, FeCO<sub>3</sub>, MgCO<sub>3</sub> — продуктов эпигенетического изменения вулканогенного материала.

#### Таблица 28

#### Средние содержания и средние скорости аккумуляции химических компонентов для главных геохронологических подразделений разреза постюрских отложений скв. 466

| Лито-<br>логи-<br>ческое<br>подрез-<br>деление | Литология                               | Керны | Интервал глу-<br>бин от поверх-<br>ности дна, м | Мощ-<br>ность, м | Стретиграфическое<br>подрезделение                                              | Керны                                                                                      |
|------------------------------------------------|-----------------------------------------|-------|-------------------------------------------------|------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| IA                                             | Наннопланк-<br>тонные илы               | 1-9   | 0-84,0                                          | 84,0             | Плейстоцен<br>Плиоцен Верхний<br>Нижний                                         | $\begin{array}{c} 1 - 3 - 1 - 20 \\ 3 - 1 - 20 - 4 - CC \\ 5 - 1 - 8 - 1 - 90 \end{array}$ |
| IB                                             | Кремнистые<br>наннопланктон-<br>ные илы | 10–27 | 84,0–245,5                                      | 161,5            | Эоцен Верхний<br>Средний<br>Нижний маастрихт<br>Кампан Верхний<br>Нижний        | 8-1-90-9-CC<br>10-1-10-CC<br>11-1-11-CC<br>12-1-15-CC<br>16-1-16-2-60<br>16-2-00-CC        |
| 11                                             | Оливково-зеле-<br>ный наннопланк-       | 2835  | 245,5–312,0                                     | 66,5             | Нижнии сантон<br>Турон-коньяк-<br>нижний сантон<br>Турон-коньяк<br>Верхний альб | 21-1 - 27-CC<br>28-1 - 28-CC<br>29-1 - 35-CC                                               |
|                                                | тонный писчий<br>мел и извест-<br>няк   |       |                                                 |                  |                                                                                 |                                                                                            |

Примечание. 1 — среднее содержание (вес.%); 2 — средняя скорость аккумуляции (мг· $cm^{-3} \cdot 10^{-3} \cdot 10^{-3} \cdot 10^{-3}$ ).

\*Определения природно-влажных образцов [Initial Reports ..., 1981].

| Стратиграфическое<br>подразделение |             | Керны            | Интервал глу-     | SiO2  |       | Al <sub>2</sub> O <sub>3</sub> |      |
|------------------------------------|-------------|------------------|-------------------|-------|-------|--------------------------------|------|
|                                    |             |                  | ОИН, М            | 1     | 2     | 1                              | 2    |
| Плейстоц                           | ен          | 1 – 3–1–20       | 0,0-17,7          | 14,53 | 149,9 | 4,02                           | 41,5 |
| <b>-</b>                           | Верхний     | 3-1-20 - 4-CC    | 17,7-36,5         | 7,14  | 141,1 | 2,06                           | 40,7 |
| плиоцен                            | Нижний      | 5-1 - 8-1-90     | 36,5-65,9         | 4,97  | 76,8  | 1,45                           | 22,4 |
| •                                  | Верхний     | 8-1-90 - 9-CC    | 65,9 <b></b> 84,0 | 3,20  | 20,3  | 0,57                           | 3,6  |
| Эоцен                              | Средний     | 10 - 1 - 10 - CC | 84,0-84,2         | _     | _     | _                              | -    |
| Нижний м                           | TX NICTOBBA | 11-1 - 11-CC     | 88,0-93,5         | -     |       | _                              |      |
|                                    | Верхний     | 12-1 - 15-CC     | 93.5-131.5        | 1,00  | 11,6  | Нет                            | 0    |
| Кампан                             | Нижний      | 16-1 - 16-2-60   | 131.5-135.0       | 0,60  | 0,65  | "                              | 0    |
| Нижний с                           | антон       | 16-2-60 - 20-CC  | 135,0-179,0       | _     | -     | -                              | -    |
| Турон-К                            | OHBAK-      | 21-1 - 27-CC     | 179.0-245.5       |       |       |                                |      |
| нижний с                           | внтон       |                  |                   | -     | -     | . —                            | -    |
| Турон-к                            | оньяк       | 28-1 - 28-CC     | 245.5-255.0 J     |       |       |                                |      |
| Верхний а                          | альб        | 29-1 - 35-CC     | 255.0-312.0       | 6.54  | 204,8 | 0,65                           | 20,4 |

Таблица 28 (окончание)

Высокие избыточные количества Р и K<sub>2</sub>O (в пересчете на БТККВ; см. рис. 21) можно интерпретировать как накопление остаточных материалов в форме биогенных фосфатов и гидрослюдистых компонентов.

Максимальные количества Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P и ассоциирующих тяжелых металлов, отмеченные в осадках раннего плиоцена–плейстоцена, отражают, как было показано

|             | Mour     | Физические парамет-<br>ры* Геох<br>гиче<br>долж<br>ность,<br>г/см <sup>3</sup> Влаж-<br>ность,% |      | Геохроноло-                                | Скорость седиментации (средняя<br>линейная) |                                                                                |  |
|-------------|----------|-------------------------------------------------------------------------------------------------|------|--------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|--|
| бин, м      | ность, м |                                                                                                 |      | должитель-<br>ность, млн.лет <sup>+?</sup> | м · 10 <sup>-6</sup> · год <sup>-1</sup>    | мг · см <sup>-2</sup> · 10 <sup>-3</sup> ·<br>год <sup>-1</sup> * <sup>3</sup> |  |
| 00-17.7     | 17.7     | 1.48                                                                                            | 42.9 | 1.8                                        | 9.83                                        | 1032                                                                           |  |
| 17.7-36.5   | 18.8     | 1.48                                                                                            | 42.9 | 1.0                                        | 18.8                                        | 1976                                                                           |  |
| 36.5-65.9   | 29.4     | 1.48                                                                                            | 42,9 | 2.0                                        | 14.7                                        | 1545                                                                           |  |
| 65.9-84.0   | 18,1     | 1.48                                                                                            | 42,9 | 3.0                                        | 6.03                                        | 634                                                                            |  |
| 84.0-84.2   | 0,2      | 1.48                                                                                            | 36,7 | 9.0                                        | 0.02                                        | 2,22                                                                           |  |
| 88.0-93.5   | 5.5      | 1.59                                                                                            | 36,7 | 2.5                                        | 2,20                                        | 269                                                                            |  |
| 93.5-131.5  | 38.5     | 1,59                                                                                            | 36,7 | 4.0                                        | 9,5                                         | 1159                                                                           |  |
| 131.5-135.0 | 3.5      | 1,59                                                                                            | 36.7 | 4.0                                        | 0.88                                        | 108                                                                            |  |
| 135.0-179.0 | 44.0     | 1.59                                                                                            | 36,7 | 2.0                                        | 22,96                                       | 2681                                                                           |  |
| 179.0-245.5 | 66.5     | 1.59                                                                                            | 36.7 | ,                                          | - •                                         |                                                                                |  |
|             |          |                                                                                                 | •    | 6,0                                        | 12 29                                       | 2167                                                                           |  |
| 245.5-255.0 | 9,5      | 2,30                                                                                            | 10,3 | ļ                                          | 12,25                                       | {~107                                                                          |  |
| 255,0-312,0 | 57,0     | 2,30                                                                                            | 10,3 | ≈4,0                                       | <b>'</b> 14,25                              | ′ 3131                                                                         |  |

\*<sup>3</sup> По данным Дж. Харденбола и В. Берггрена (1978 г.) [Initital Reports..., 1981] и Дж. ван Хинта [Hinte, 1976].

\*<sup>3</sup> В пересчете на воздушно-сухой материал (с учетом природной влажности) [Initial Reports . . , 1981].

| Ca    | co,    | F    | e    | Mn   |      | Р    |     |
|-------|--------|------|------|------|------|------|-----|
| 1     | 2      | 1    | 2    | 1    | 2    | 1    | 2   |
| 71,42 | 737,1  | 0,93 | 9,6  | 0,03 | 0,31 | 0,03 | 0,3 |
| 83.65 | 1652,9 | 0,45 | 8.9  | 0,01 | 0,2  | 0.02 | 0,3 |
| 88,16 | 1362,1 | 0,46 | 7,1  | 0,05 | 0,8  | 0,05 | 0,8 |
| 90,99 | 576,9  | 0,32 | 2,0  | 0,09 | 0,6  | 0,11 | 0,7 |
| -     | -      | _    |      | _    | -    | -    | _   |
| -     | -      | _    | _    | -    | -    |      | _   |
| 95,85 | 1110,9 | 0,10 | 1,2  | Нет  | 0    | 0,01 | 0,1 |
| 94,60 | 102,2  | 0,14 | 0,15 | 0,01 | 0,01 | 0,02 | 0,0 |
| -     | -      | _    | _    | -    | -    |      | -   |
| -     | -      | -    | -    | -    | -    | _    | -   |
| 78,78 | 2466,6 | 0,34 | 10,6 | Нет  | 0    | 0,08 | 2,5 |

выше (см. рис. 18 и 19), наличие вулканокластических базальтовых компонентов (см. рис. 20 и 21).

Распределение средних скоростей аккумуляции компонентов. Близкое соседство участков скв. 465 и 465А, а также 466 позволяет при анализе скоростей седиментации и накопления компонентов оценить соотношения между региональными и локальными

| Стратиграфи-      |                   |                    |                   |              |           |           |              | MacOa                                              | FeCOc        | MacQa          |
|-------------------|-------------------|--------------------|-------------------|--------------|-----------|-----------|--------------|----------------------------------------------------|--------------|----------------|
| YECKOE            | SIU2              | AI2 <sup>0</sup> 3 | Caco <sup>3</sup> | Fe           | MIN       |           | Cops         | 1 1003                                             |              |                |
| Поризосление      | 2,04,06,08,0      | 1,0 2,0 3,0 4,0    | 60 70 80 90       | 0,20,40,60,8 | 0,02 0,06 | 0,02 0,06 | 1,02,03,04,0 | 0,04 0,012                                         | 0,20,40,60,8 | 0,20,40,60,810 |
| Плейстоцен        | 14,53             |                    |                   |              |           |           | 0,0          | 0,0                                                | 0,0          | 0,0            |
| верхний плиоцен   |                   |                    |                   |              | 8         |           |              | 0,0                                                | 0,0          | 0,0            |
| Нижний плиоцен    | Hillin.           |                    |                   |              |           |           | 0,0          | ×.                                                 |              | 0,0            |
| верхний миоцен    |                   |                    |                   |              | [         |           |              |                                                    |              |                |
| Средний миоцен    |                   |                    |                   |              |           |           |              |                                                    |              |                |
| Нижний миоцен     |                   |                    |                   |              | (Пере     | (pb18)    |              |                                                    |              |                |
| Верхний алигацен  |                   |                    |                   |              | -         | Ì         |              |                                                    |              |                |
| Нитний олигоцен   |                   |                    |                   |              |           |           |              |                                                    |              |                |
| верхний зоцен     |                   |                    |                   |              |           | 0,11      |              | ,x,x,x,x,0,18,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x, |              |                |
| Сревний эрцен     | 0                 | 0                  | 0                 | 0            | 0         | $\odot$   | 0            | Q                                                  | Q            | Q              |
| Нижний зоцен      |                   |                    |                   |              |           |           |              |                                                    |              | 1              |
| верхний палеоцен  |                   |                    |                   |              | Пеле      | (A)       |              |                                                    |              |                |
| Нижний палеоцен   |                   |                    |                   |              | (nepe     |           |              |                                                    |              | 1              |
| верхний маастрихт |                   |                    |                   |              |           |           |              |                                                    |              |                |
| Нижний маастрихт  | 0                 | 0                  | 0                 | Ō            | 0         | $\odot$   | 0            | $\odot$                                            | 0            | 0              |
| Верхний кампан    |                   | 0,0                |                   |              | 0,0       |           | 0,0          | 0,0                                                | <b></b>      |                |
| Нижний кампан     |                   | 0,0                |                   |              | 8         | N         | 0,0          |                                                    |              |                |
| Верхний сантон    |                   |                    |                   |              |           |           |              |                                                    |              |                |
| Нижний сантон     | 0                 | 0                  | $\odot$           | $\odot$      | 0         | 0         | 0            | 0                                                  | 0            | 0              |
| Верхний коньяк    |                   |                    |                   |              |           |           |              |                                                    |              |                |
| Нижний коньяк     |                   | 0-                 |                   |              |           |           |              |                                                    |              |                |
| верхний турон     | $\psi_{\pm \chi}$ |                    |                   | $\forall$    |           |           |              |                                                    |              |                |
| Средний туран     |                   |                    |                   |              |           |           |              |                                                    | ]            |                |
| Нижний турон      |                   |                    |                   |              |           |           |              |                                                    |              |                |
| верхний сеноман   |                   |                    |                   |              | (Пери     | грыв)     |              |                                                    | i            |                |
| Средний сеноман   |                   |                    |                   |              |           | 1         |              |                                                    |              |                |
| Нижний сеноман    |                   |                    |                   |              |           |           |              |                                                    | L            |                |
| верхний альб      |                   |                    |                   |              | 0,0       |           |              | 0,0                                                |              |                |
|                   |                   |                    |                   |              |           | $\sim$    | -            |                                                    |              |                |

Рис. 20. Распределение средних содержаний (вес. % в пересчете на воздушно-сухую навеску) SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn, P, C<sub>орг</sub>и нормативных молекул CaCO<sub>3</sub>, MnCO<sub>3</sub>, FeCO<sub>3</sub>, MgCO<sub>3</sub> в разрезе постюрских отложений скв. 466

| Стратиграфичес   | Fe<br>2,0 4,0 6,0 8,0 | Mn<br>0,2 0,4 0,6 0,8 | P<br>1,0 2,0 3,0 4,0 | MgO<br>5,0 15,0 | K <sub>2</sub> O<br>4,0 8,0 12,0 16,0 |
|------------------|-----------------------|-----------------------|----------------------|-----------------|---------------------------------------|
| Плейстоцен       |                       |                       | N                    | +++++           |                                       |
| верхний плиоцен  |                       |                       | Ň                    | ++++++          |                                       |
| Нижний плиоцен   |                       |                       |                      | +++             |                                       |
| Верхний миоцен   |                       |                       |                      |                 |                                       |
| Средний миоцен   |                       |                       |                      |                 |                                       |
| Нижний миоцен    |                       |                       | (Перерыв)            |                 |                                       |
| верхний алигоцен |                       | 1                     |                      |                 |                                       |
| Нитний олигоцен  |                       |                       |                      | 1               |                                       |
| Верхний зоцен    | 0,0                   | 0,0                   | 8,51                 | 0,0             |                                       |
| Средний зоцен    | 0                     | Ô                     | 0                    | Ø               | $\odot$                               |
| Нижний зоцен     | ************          |                       |                      | 1               |                                       |
| Верхний палвоцен |                       |                       |                      |                 |                                       |
| Нижний палеацен  |                       |                       | (Перерыв)            |                 | 1                                     |
| Верхний маастрих | 77                    |                       |                      | ļ               |                                       |
| Нижний маастрихс | · ①                   | 0                     | 0                    | 0               | 0                                     |
| Верхний кампан   | 0,0                   | 0,0                   | N                    |                 |                                       |
| Нижний кампан    | 0,0                   | 0.0                   | N .                  | 0,0             | XXXXXXX                               |
| Верхний сантон   |                       | 1                     |                      | 1               |                                       |
| Нижний сантан    | 0                     | 0                     | 0                    | <u> </u>        | 0                                     |
| Верхний коньяк   | Ø                     | 0                     | T Ö                  | 0               | 0                                     |
| Нитний коньяк    |                       |                       |                      |                 |                                       |
| Верхний турон    |                       |                       |                      |                 |                                       |
| Средний туран    |                       |                       | 1                    |                 | 1                                     |
| Нижний турон     |                       |                       | 1                    | 1               |                                       |
| Верхний свнотан  |                       | 1                     | (Repepart)           |                 | ł                                     |
| Средний сенаман  |                       |                       |                      | 1               |                                       |
| Нитний сеноман   |                       |                       | Ι.                   | 1               |                                       |
| верхний альб     |                       | 0,0                   | 5,11                 | #+++ 26,19+++   |                                       |

Рис. 21. Распределение средних содержаний (вес.% в пересчете на БТККВ) Fe, Mn, P, MgO и K<sub>2</sub>O в разрезе постюрских отложений скв. 466

факторами. Однако сравнительно многочисленные перерывы, их эрозионное воздействие, приводящее к существенному уменьшению мощностей отложений и соответственно к сокращению и так уже минимальных скоростей седиментации, создают трудности в адекватной генетической интерпретации этих данных. Выделяются три этапа.

1-й этап — поздний альб (раннеокеанский) характеризуется отложениями, по фациально-генетической природе и геохимическим особенностям весьма близкими вскрытым на участках скв. 465 и 465А. Однако отсутствие в разрезе скв. 466 стратиграфически согласных границ позднеальбских отложений с покрывающими и подстилающими образованиями [Initial reports ..., 1981] отражается в том, что вычисленные скорости седиментации, аккумуляции компонентов здесь в 2–3 раза ниже, чем для скв. 465 и 465А. Неприемлемость таких данных очевидна.

2-й этап — позднемеловой (поздний турон — маастрихт), как отмечалось выше, в целом характеризуется сокращенными мощностями осадков из-за многочисленных перерывов. Геохимические характеристики этих отложений для участковскв 465, 465А и 466 весьма близки.

Следует отметить, что сравнительно высокие скорости седиментации для позднего турона--раннего коньяка и для раннего сантона (см. рис. 22) могут быть объяснены при помощи модели горизонтального перемещения Тихоокеанской плиты к северу. Согласно этой модели [Lancelot, Larson, 1975; Lancelot, 1978; Andel, 1974; и др.], южный район возвышенности Хесса мог пересекать экваториальную зону высокой биологической продуктивности в течение сеномана-коньяка либо в близкий к этому интервал времени. Напомним, что именно эти два геохронологических интервала в разрезе скв. 465 и 465А характеризовались существенно более низкими (в 3-4 раза меньшими) скоростями седиментации, чем для скв. 466. Вместе с тем для некоторых случаев, в частности для раннего сантона, нельзя исключать влияния местного переетложения осадков (вследствие проявлений в это время локальных блоковых подвижек) и, таким

| the second se |                            |              |          |                    |                    |       |              | · · · · · · · · · · · · · · · · · · · |
|-----------------------------------------------------------------------------------------------------------------|----------------------------|--------------|----------|--------------------|--------------------|-------|--------------|---------------------------------------|
| Стратиграфичес-                                                                                                 | Скорон<br>С <b>едим</b> ен | сть<br>тации |          |                    |                    |       | · · ·        |                                       |
| кое<br>подразделение                                                                                            | I                          | П            | CaCO3    | SiO <sub>2</sub>   | Al <sub>2</sub> O3 | Fe    | Mn           | Р                                     |
|                                                                                                                 | 5,010,015,020,0            | 600 1800     | 500 1500 | 50 150             | 10 20 30 40        | 2468  | 0,20,40,60,8 | 0,50 0,150                            |
| Плейстоцен                                                                                                      |                            |              |          |                    |                    |       |              |                                       |
| верхний плиоцен                                                                                                 |                            |              |          | 1.14.              |                    |       | 8            | N                                     |
| Нижний плиоцен                                                                                                  |                            |              |          | 1.11               |                    |       |              | N                                     |
| Верхний миоцен                                                                                                  |                            |              |          |                    |                    |       |              |                                       |
| Средний миоцен                                                                                                  | 1                          |              |          |                    |                    |       |              |                                       |
| ที่บาททนนี้ Muoyen                                                                                              | 1                          |              |          | (Лер               | 1<br>2018)         |       |              |                                       |
| Верхний алигоцен                                                                                                | 1                          |              |          |                    | l i                |       |              |                                       |
| Натний олигоцен                                                                                                 | 1                          |              |          |                    |                    |       |              |                                       |
| Верхний зацен                                                                                                   |                            | 鍿            |          |                    | Ì                  |       |              | $\square$                             |
| Средний зрцен                                                                                                   | 0,02                       | 2,22         | 0        | 0                  | 0                  | 0     | $\odot$      | $\bigcirc$                            |
| Нижний зацен                                                                                                    |                            |              |          |                    |                    | [     |              | 4                                     |
| верхний палеоцен                                                                                                |                            |              |          |                    |                    |       |              |                                       |
| Нижний палеоцен                                                                                                 | ]                          |              |          | (1180              | ED610)             |       |              |                                       |
| Вераний манстрикат                                                                                              |                            |              |          |                    |                    |       |              | I                                     |
| Hummit maacmpuzm                                                                                                | f.                         | X.           | 0        | 0                  | 0                  | 0     | $\bigcirc$   | 0                                     |
| верхний кампан                                                                                                  |                            |              |          | ****               | 0,0                |       | 0,00         | 0                                     |
| Hummul Kamman                                                                                                   | 2                          |              |          | 0,6                | 0,0                |       | 0,01         | 0,02                                  |
| Верхний сантон                                                                                                  |                            |              |          | (Пер               | epold)             |       |              |                                       |
| Нимпий сантон                                                                                                   |                            | 3264         | 0        | 0                  | 0                  | 0     | 0            | 0                                     |
| верхоний коньяк                                                                                                 |                            |              |          |                    |                    |       |              |                                       |
| Нижний коньяк                                                                                                   |                            |              |          | <u> </u>           |                    |       |              |                                       |
| верхний турон                                                                                                   |                            |              |          | ·····              | ļ                  | ····· | ·····        | ·····                                 |
| Средний турон                                                                                                   |                            |              |          |                    |                    |       |              |                                       |
| пижниц турон                                                                                                    |                            |              |          |                    |                    |       |              |                                       |
| BEPITHUU CEHOMAH                                                                                                |                            |              |          | (Neg               | CD618)             |       |              |                                       |
| средний сеноман                                                                                                 | 1                          |              | 1        |                    | 1                  | 1     |              | 1                                     |
| HUMHUÙ CENOMAN                                                                                                  |                            |              |          | *****              |                    |       |              |                                       |
| BERSENUE ANDE                                                                                                   |                            | 3131         |          | 11 Mar 11 11 11 11 |                    | 10,6  | 0,00         | 2,50                                  |

Рис. 22. Распределение средних скоростей седиментации (I — мм·см<sup>-2</sup>·10<sup>-3</sup>·тод<sup>-1</sup>; II — мг·см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>) и аккумуляции компонентов (мг·см<sup>-2</sup>·10<sup>-3</sup>·год<sup>-1</sup>). СаСО<sub>3</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и P в разрезе постюрских отложений скв. 466

образом, некоторого завышения скоростей седиментации. Такие локальные блоковые движения достаточно реальны (см. литологическое описание разреза [Initial reports..., 1981]).

3-й этап — третичный —четвертичный представлен реликтами осадков среднего и позднего зоцена, сохранившимися после крупного перерыва (ранний олигоцен — поздний миоцен), и осадками раннего плиоцена — плейстоцена. Последние характеризуются относительно повышенными для пелагических осадков скоростами седиментации и аккумуляции Al<sub>2</sub>O<sub>3</sub>, Fe и Mn (см. табл. 28 и рис. 22). Из сопоставления скоростей седиментации и аккумуляции компонентов в позднем плиоцене — плейстоцене для участков скв. 465, 465А и 466 следует, что в северо-восточной части банки Меллиш осадки накапливались в 2—10 раз более интенсивно, а локальное проявление базальтового вулканизма сказалось на существенно более высоких (в 10—20 раз) темпах аккумуляции Al<sub>2</sub>O<sub>3</sub>, Fe и Mn (см. рис. 22). Как отмечалось выше, преобладающая форма нахождения данных компонентов в осадках — тонкая базальтовая вулканокластика. Вместе с тем наблюдаемые для раннеплиоценовых — плейстоценовых осадков скорости седиментации и аккумуляции компонентов не превышают значений, известных для карбонатных пелагических илов [Arrhenius, 1963, 1967; Безруков, Романкевич, 1970; Богданов, Чеховских, 1979; Лисицын, 1974, 1978; Mac Arthur, Elderfield, 1977].

#### ГЕОХИМИЧЕСКАЯ ИСТОРИЯ СЕДИМЕНТАЦИИ

На основании анализа распределения содержаний главных компонентов и тяжелых металлов, форм их нахождения, а также скоростей аккумуляции осадков и компонентов выделяются этапы, знаменующие собой главные события геохимической истории постюрской седиментации данного участка возвышенности Хесса.

1-й этап — поздний альб (раннеокеанский). Накапливались осадки, представленные в исследованных образцах тонкослоистыми оливково-серыми известняками с подчиненными количествами серых известняков, содержащие существенные количества (до 20— 30%) базальтоидной вулканокластики и сапропелевидного органического вещества (Сорг, до 8—10%, среднее 4,31).

Выше отмечалось, что литологические, минералогические, геохимические и фациальные характеристики этих отложений близки к тому, что наблюдается для эквивалентных осадков, вскрытых скв. 465 и 465А. Есть основания считать, что в исследуемом разрезе вследствие перерыва были эродированы осадки, по крайней мере раннего сеномана и частично позднего альба, развитые на соседнем участке скв. 465 и 465А.

Самая существенная геохимическая особенность седиментации этого этапа заключается в том, что наибольшая часть главных компонентов и тяжелых металлов аккумулировалась в форме базальтоидной вулканокластики, измененной в Fe-монтмориллонит, смешаннослойную фазу иллит-монтмориллонит. С вулканогенными продуктами тесно связано сапропелевидное вещество. Интенсивные темпы накопления органического вещества в мелководном, котловинного типа бассейне со стагнированным режимом придонных вод обусловлены высокой биологической продуктивностью его планктонной зоны. Развитию последней благоприятствовало поступление в бассейн питательных минеральных компонентов вулканического происхождения. В результате постседиментационных преобразований сформировалась геохимическая ассоциация IA (+) главных компонентов, тяжелых металлов и органического вещества (см. рис. 18, табл. 22–25, 28). Относительно менее выраженную геохимическую роль играло накопление собственно карбонатных мелководных осадков турбидитной природы.

В данном разрезе нельзя адекватно оценить скорости накопления осадков, однако из сопоставления с данными по скв. 465 и 465А можно заключить, что они отличались высокими значениями, характерными для протоокеанской стадии развития бассейна [Tiercelin, Faure, 1978].

Фаза: ранний сеноман—средний турон (перерыв в седиментации). Перерыв характеризуется сравнительно широким региональным распространением в пределах возвышенности Хесса. Однако его геохронологическая продолжительность и эрозионная активность в значительной мере обусловливаются локальными блоковыми движениями, особенностями палеогидродинамики (см. описание геохимической истории седиментации для скв. 464, 465 и 456А). Можно полагать, что перерыв на данном участке связан с развитием позднемеловых аналогов пассатных (приэкваториальных) течений и их северозападных ветвей [Luyendyk et al., 1972].

2-й этап — позднемеловой (поздний турон—ранний маастрихт). Накопление пелагических наннофоссилиевых осадков нарушалось перерывом (поздний сантон). Геохимические характеристики этих осадков близки к пелагическим карбонатным илам. Примечательна диа-эпигенетическая перекристаллизованность карбоната (см. рис. 18, ассоциация IIB (—)).

Относительно высокие скорости накопления осадков в позднем туроне—раннем сантоне могут быть интерпретированы, как уже отмечалось, на основе модели, описывающей движение Тихоокеанской плиты к северу, согласно которой южная часть возвышенност Хесса в течение сеномана—коньяка либо в близкие к этому интервалы времени могла находиться в экваториальной зоне высокой биологической продуктивности. Вместе с тем гальки щелочного базальта, наблюдаемые в карбонатных осадках позднего кампана, могут свидетельствовать о роли местных источников сноса, переотложения осадочного материала в ограниченных грабеновидных впадинах.

З-й этап — третичный —четвертичный. Фаза: поздний маастрихт — ранний зоцен (перерыв в седиментации). Перерыв носит широкорегиональный характер, отражающий резкое изменение глобальной океанской палеоциркуляции. Однако относительно большая • геохронологическая продолжительность рассматриваемого перерыва и его подчеркнутая эрозионная выраженность по сравнению с разрезом скв. 465 и 465А свидетельствуют об определенной роли ряда местных факторов (особенностей палеоциркуляции, геоморфологии дна, блоковых движений и др.), которые благоприятствуют развитию данного перерыва.

Фаза: средний – поздний эоцен. Накапливались осадки резко сокращенной мощности, носящие характер реликтовых образований. Об этом свидетельствуют повышенные количества остаточных (от растворения) продуктов: гидроокислов Mn, Al<sub>2</sub>O<sub>3</sub> и Р (ассоциация IIIA (+); см. рис. 18), локализующихся близ эрозионной границы осадков позднего зоцена. Данный вывод подтверждается смешанным составом фаунистических комплексов, содержащих формы, переотложенные из более древних отложений.

Фаза: ранний олигоцен—поздний миоцен (перерыв в седиментации). Перерыв носит широкорегиональный характер для центральной области северо-западной части Тихого океана. Конкретная продолжительность перерыва определяется соотношениями тех же локальных факторов, что и для предыдущего перерыва.

Фаза: ранний плиоцен—плейстоцен. Накапливались пелагические, преимущественно наннофоссилиевые илы (остатки фораминифер; среднее содержание 4—5%) с незначительной примесью диатомовых (в среднем 2—4%), радиолярий (в среднем 3—4%), спикул губок и силикофлагеллят. Тонкая (гиалопелит, алеврит) вулканокластика преимущественно базальтоидного, реже кислого состава в отдельных горизонтах составляет до 10%.

Характерной геохимической чертой этих осадков является относительно высокое содержание SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и ассоциирующих тяжелых металлов, возрастающее от раннего плиоцена к плейстоцену (см. рис. 20 и 21). Интерпретация данных факторного анализа в контексте результатов изучения минералогии и литологии позволяет считать, что в это время главные компоненты и тяжелые металлы накапливались главным образом в форме вулканокластики (ассоциации IIA (+), см. рис. 18; IA (+), см. рис. 19), преобразованной в существенной мере в полиминеральные глинистые продукты: иллит, хлорит с примесью монтмориллонита и каолинита. Помимо поступления этих компонентов из вулканических источников и аутигенного генезиса некоторое количество их могло поставляться как золовый терригенный материал. Однако доминирующая роль вулканогенных компонентов очевидна. Эта геохимическая особенность находит отражение в распределении величин скоростей аккумуляции SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe и Mn (см. рис. 22). Если в течение данной фазы скорости седиментации и соответственно аккумуляции СаСОз достигают наибольших значений в позднем плиоцене, то для SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe и других компонентов наблюдается последовательное возрастание от раннего плиоцена к плейстоцену, связанное с активизацией островного вулканизма. Для Mn и P повышенные скорости аккумуляции в раннем плиоцене обусловлены базальной природой этих осадков: соединения Мо и Р накапливались преимущественно как продукты растворения (ассоциация IIIA (+), см. рис. 18 и 22) после относительно крупного (ранний олигоцен-поздний миоцен) перерыва.

Итак, положение разреза скв. 466 позволило сравнительно оценить роль региональных и локальных факторов в формировании осадков, в частности особенности их химического состава, в различные этапы истории седиментации.

Для изученного участка возвышенности Хесса, как и для других районов северозападной части Тихого океана, в истории постюрской седиментации выделенные геохимические этапы отражают эволюцию бассейна от обстановок относительно мелководной седиментации со стагнированным режимом придонных вод, накоплением сапропелевых осадков и существенным влиянием вулканизма до пелагического осадконакопления открытого океана.

#### АССОЦИАЦИИ ГЛАВНЫХ КОМПОНЕНТОВ И ТЯЖЕЛЫХ МЕТАЛЛОВ — ИНДИКАТОРЫ ГЕОХИМИЧЕСКОЙ ЭВОЛЮЦИИ Постюрской седиментации центральной области северо-западной части тихого океана

Разрезы постюрских отложений, вскрытые бурением в районах гор Маркус-Неккер и возвышенности Хесса, являются ключевыми для изучения широких аспектов геохимической эволюции седиментации центральной области северо-западной части Тихого океана. В предыдущих разделах были приведены данные, характеризующие особенности геохимической истории седиментации для отдельных разрезов.

Ниже сделана попытка дать синтез геохимической эволюции постюрской седиментации исследованных областей северо-западной части Тихого океана, выявить соотношения между региональными и локальными факторами, контролирующими эти процессы. В качестве индикаторов геохимической эволюции осадкообразования избраны парагенетические ассоциации главных компонентов и тяжелых металлов, рассмотрение которых проводится в общем контексте данных по минералогии, литологии, геологическому строению. Иными словами, оценка геохимической специфики основных этапов истории седиментации и выявление их геологической и палеоокеанографической природы составляют главную цель предпринятой попытки.

#### ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ КОМПОНЕНТОВ

В предыдущих разделах парагенетические ассоциации химических компонентов выделялись в результате интерпретации результатов факторного анализа с использованием материалов по минералогии и литологии для каждой скважины. Здесь же мы используем результаты обработки всего массива имеющихся аналитических данных. Это обстоятельство выразилось в известной обобщенности, осредненности полученных результатов и привело к потере ряда геохимических характеристик, отвечающих особенностям химического, минерального состава осадков конкретных разрезов.

Оценка изменений химического состава осадков основных геохронологических подразделений дается по средним содержаниям компонентов. Для каждого сравнительно однородного в литологическом отношении геохронологического подразделения были рассчитаны средние величины факторных значений выделенных ассоциаций компонентов. Такая обработка довольно крупного массива аналитических данных позволяет выделить генерализованные, но регионально относительно устойчивые ассоциации, оценить распределение в течение постюрского времени главных компонентов и тяжелых металлов.

# Ассоциации, выявляемые на основе данных химического анализа (табл. 29; рис. 23–27)

Ассоциация IA (+):  $Al_2O_3$  (0,21), Mg (0,16),  $Na_2O$  (0,74),  $K_2O$  (0,57), Fe (0,53), Mn (0,68), P (0,40), Cr (0,65), Ni (0,78), V (0,36), Cu (0,72), Co (0,83), Pb (0,83), Ga (0,70), Ge (0,27), Mo (0,58). Она представлена преимущественно вулканокластическими материалами базальтового состава, частично измененными в монтмориллонитгидрослюдистые продукты, обогащенные гидроокислами Fe и Mn и связанными с ними тяжелыми металлами (см. табл. 29 и рис. 23). Несмотря на то, что данный набор



Рис. 23. Стратиграфическое распределение факторных значений ассоциации IA (+) в постюрских отложениях скважин 62-го рейса

1-4 — факторные значения: 1 — < 0,10; 2 — 0,10-0,50; 3 — 0,50-1,00; 4 — > 1,00; 5 (на этом и последующих аналогичных рисунках) — перерыв Литология — см. на рис. 2

компонентов является весьма характерным для постюрских отложений рассматриваемых районов (вклад в дисперсию: 55,25%), наиболее крупные величины факторных значений наблюдаются для тех интервалов разреза, где влияние примеси базальтовой вулканокластики, гидроокислов Fe и Mn выражено хорошо: в районе гор Маркус-Неккер (скв. 463) — для отложений позднего апта (пестроцветный известняк) и остаточных от эрозионного растворения нанномикритовых осадков раннего—среднего зоцена, позднего олигоцена; в северной части возвышенности Хесса (скв. 464) — для



вулканокластических осадков позднего мела—плиоцена, особенно для серии бурых глин (см. рис. 23). Развитие этих осадков носит локальный характер. Более подробные данные приведены выше при описании геохимии постюрских отложений скв. 463 и 464.

Ассоциация IB (—): СаО (—0,65), СО<sub>2</sub> (—0,78). Данная группировка компонентов представлена карбонатом кальция как продуктом глубокой эпигенетической перекристаллизации фораминиферово-наннофоссилиевых и других разностей биогенных илов (см. рис. 24). Примечательно, что относительно высокие величины факторных значений (более 0,5) сравнительно редко наблюдаются в отложениях, моложе раннего сеномана. Как правило, данная группировка компонентов наиболее развита в перекристаллизованных известняках, писчем мелу, характеризующихся существенно повышенными плотностями (см. рис. 24) по сравнению с вышележащими неконсолидированными осадками (см. данные по скв. 463—466).

Ассоциация IIB (—): MgO (—0,32), C<sub>орг</sub> (—0,83), Р (—0,45), Cr (—0,43), Ni (—0,46), V (—0,79), Cu (—0,35), Mo (—0,68). Она представлена магнезиальными монтморилло-



Рис. 24. Стратиграфическое распределение фекторных значений ассоциации IB (--) в постюрских отложениях скважин 62-го рейса

Факторные значения: 1 — < 0,25; 2 — 0,25–0,50; 3 — 0,50–0,70; 4 — > 0,70 Литология — см. на рис. 2

нитами и продуктами изменения базальтовой вулканокластики, тесно связанными с органическим веществом, преимущественно сапропелевой природы, фосфатами и набором тяжелых минералов.

Данная группировка компонентов характеризуется выраженным стратиграфическим положением в разрезе (см. рис. 25): она развита главным образом в известняковых отложениях раннего мела (ранний апт-поздний альб-ранний сеноман), связанных с начальными стадиями формирования бассейна. Как отмечалось выше, при описании разрезов скв. 463—466, эти относительно мелководные осадки характеризуются по-





| 1,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 42<br>46<br>46<br>46<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | 111 AL203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2                                                                  | $\frac{1}{1} \frac{1}{1} \frac{1}$ |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 81                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>(</u> )                                                         | Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

,



Рис. 25. Стратиграфическое распределение факторных значений ассоциации IIB (—) в постюрских отложениях скважин 62-го рейса

Факторные значения: 1 - < 0.25; 2 - 0.25 - 0.5; 3 - 0.5 - 1.0; 4 - > 1.0Литология — см. на рис. 2

вышенными количествами базальтоидной вулканокластики, измененной в глинистые компоненты, и органического вещества сапропелевого типа. Вместе с тем обращает на себя внимание факт развития магнезиального монтмориллонита по тонкой базальтоидной вулканокластике, слагающей серию "бурых глин" (поздний мел--средний миоцен) в северной части возвышенности Хесса (скв. 464). В этом случае общий набор компонентов, за исключением Сорг, идентичен рассмотренной выше группировке. Подобная локальная особенность данного разреза не нарушает справедливости глав-



ного геохимического вывода: ассоциация IIВ (--) с определенностью отражает раннюю стадию развития описанного бассейна в этом регионе.

Ассоциация IIIA (+): SiO<sub>2</sub> (0,93), Al<sub>2</sub>O<sub>3</sub> (0,83), MgO (0,60), K<sub>2</sub>O (0,70), Fe (0,74), Mn (0,36), P (0,43), Cr (0,40), Ni (0,34), Cu (0,47), Co (0,30), Pb (0,18), Ga (0,38), Ge (0,40). Данные по минералогии постюрских отложений позволяют считать, что рассматриваемая группировка представлена преимущественно глинистыми компонентами монтмориллонит-гидрослюдистого состава, которые развиты по базаль-



Рис. 26. Стратиграфическое распределение факторных значений ассоциации IIIA (+) в постюрских отложениях скважин 62-го рейса

Факторные значения: 1 – < 0,10; 2 – 0,10–0,50; 3 – 0,50–0,75; 4 – 0,75–1,00; 5 – > 1,00 Литология – см. на рис. 2

тоидной вулканокластике и с которыми могут быть связаны выделения свободного SiO<sub>2</sub> (опал, халцедон, кварц), отчасти гидроокислы Fe и Mn, а также соответствующий набор тяжелых металлов (см. табл. 29 и рис. 26).

От ассоциации IA (+) (см. рис. 23) группировка IIIA (+) отличается более высокими величинами факторных нагрузок собственно монтмориллонит-гидрослюдистых компонентов: Al<sub>2</sub>O<sub>3</sub>, MgO, K<sub>2</sub>O, а также наличием SiO<sub>2</sub>, отсутствующей в ассоциации IA (+) (см. табл. 29).



∑1 **////**2 **XXXX** 3 **FCFF** 4 **IIII** 5

Относительно большие величины факторных значений (> 0,50) этой ассоциации отмечаются в отложениях, обогащенных глинистыми компонентами вулканогенной природы: преимущественно в раннемеловых породах, реже в осадках отдельных горизонтов позднего мела (см. рис. 26). Ассоциация характеризуется относительно четкой латеральной выдержанностью. Интервалы ее развития с определенностью отвечают отложениям ранних стадий развития океана при скользящем характере нижней и верхней геохронологических границ для двух главных структур: гор Маркус-Неккер и возвышенности Хесса (см. рис. 26). Вместе с тем локальное развитие вулканогенных глинистых компонентов как в северной части возвышенности Хесса (скв. 464, серия "бурых глин"), так и в южной ее части (скв. 466, плиоцен-плейстоценовые осадки) находит отражение в относительно повышенных величинах факторных значений (см. рис. 26). Однако эти частности не затушевывают главной индикаторной роли данной группировки.

Ассоциация IIIB (--): CaO (-0,57), CO<sub>2</sub> (-0,42), C<sub>орг</sub> (-0,04). Она представлена 7. Зак. 2150 97



Рис. 27. Стратиграфическое распределение факторных значений ассоциации IIIB (--) в постюрских отложениях скважин 62-го рейса

Факторные значения : 1 — < 0,25; 2 — 0,25–0,50; 3 — 0,50–0,75; 4 — > 0,75 Литология — см. на рис. 2

карбонатом кальция, слагающим слабоконсолидированные осадки, преимущественно фораминиферово-наннофоссилиевые разности, включая писчий мел. Обращает на себя внимание наличие в составе группировки Сорг, характеризующегося весьма низкой величиной факторной нагрузки (см. табл. 29).

Карбонатные отложения, отличающиеся относительно высокими величинами факторных значений этой ассоциации (> 0,5), распространены среди позднемеловых—





#### Таблица 29

| Kanadana                       | Фактор<br>вращен | ные нагруз<br>ия | ки после      | Kouroun         | Факторные нагрузки после<br>вращения |              |               |  |
|--------------------------------|------------------|------------------|---------------|-----------------|--------------------------------------|--------------|---------------|--|
| KOMIOHEHT                      | Фактор<br>І      | Фактор<br>II     | Фактор<br>III | Компонент       | Фактор<br>і                          | Фактор<br>II | Фактор<br>111 |  |
| SiO <sub>2</sub>               | 0,08             | 0,03             | 0,93          | Ni              | 0,78                                 | -0,46        | 0,34          |  |
| Al <sub>2</sub> O <sub>3</sub> | 0,21             |                  | 0,83          | v               | 0,36                                 | -0,79        | •             |  |
| CaO                            | -0,65            |                  | 0,57          | Cu              | 0,72                                 | -0,35        | 0.47          |  |
| MgO                            | 0,16             | -0,32            | 0,60          | Co              | 0,83                                 |              | 0.30          |  |
| Na <sub>2</sub> O              | 0,74             |                  | 0,04          | Pb              | 0,83                                 |              | 0.18          |  |
| κ, ο                           | 0,57             | 0,02             | 0,70          | Ga              | 0,70                                 |              | 0.38          |  |
| co,                            | -0,78            |                  | -0,42         | Ge              | 0,27                                 |              | 0.40          |  |
| Copr                           |                  | 0,83             | -0,04         | Мо              | 0,58                                 | 0.68         |               |  |
| Fe                             | 0,53             |                  | 0,74          | Вклад в диспер- | 55.25                                | 9.48         | 8 05          |  |
| Mn                             | 0 <i>,</i> 68    |                  | 0,36          | сию, %          |                                      | -,           | 0,00          |  |
| Р                              | 0,40             | -0,45            | 0,43          | Суммарная       | 55,25                                | 64.73        | 72.78         |  |
| Cr                             | 0,65             | -0,43            | 0,40          | дисперсия, %    |                                      |              |               |  |

# Результаты факторного анализа для химических компонентов отложений мезозоя и кайнозоя скв. 463, 464, 485, 465А и 466

третичных отложений, которые в большинстве случаев (см. рис. 27) играют роль базальных осадков, располагающихся над эрозионными перерывами. Как отмечалось в описаниях геохимии разрезов скв. 463—466, отложения несут отчетливые признаки продуктов растворения. В этом контексте присутствие в составе ассоциации Сорг, слабо связанного с карбонатом кальция, может быть истолковано как косвенное свидетельство наличия остаточного органического вещества.

Отложения, в которых С<sub>орг</sub> содержится в ощутимых количествах (> 1%), характеризуются умеренными величинами факторных значений (~0,40): нижний апт (скв. 463), верхний альб (скв. 465 и 465А) (см. рис. 27). Выше отмечалось, что в таких осадках органическое вещество связано с основной вулканокластикой и развитыми по ней глинистыми продуктами (ассоциация IIB (-); см. рис. 25).

# Ассоциации, выявляемые на основе данных химического анализа, пересчитанных на БТККВ (табл. 30; рис. 28–33)

Ассоциация IA (+) : Na<sub>2</sub>O (0,10), Fe (0,18), Mn (0,15). Она представлена главным образом гидроокислами Fe и Mn, развитыми по базальтоидной вулканокластике (см. табл. 30, рис. 28). Выделяются два главных геохронологических интервала, отличающихся относительно высокими величинами (>0,5) факторных значений (см. рис. 28): а) отложения раннего апта-раннего альба в районе гор Маркус-Неккер (скв. 463) и осадки позднего альба в южной части возвышенности Хесса (скв. 465А); б) плейстоценовые, частично плиоценовые осадки, обогащенные базальтоидной вулканокластикой и рассеянными выделениями гидроокислов Fe и Mn (см. рис. 28).

Ассоциация IB (–):  $K_2O$  (–0,26), Cr (–0,82), Ni (–0,89), V (–0,91), Cu (–0,68), Co (–0,49), Pb (–0,34), Ga (–0,49), Ge (–0,33), Mo (–0,67). Избыточные количества K и связанных тяжелых металлов (см. табл. 30, рис. 29), образующих группировку, развитую преимущественно среди нижнемеловых отложений, позволяют интерпретировать ее как представляющую гидрослюдистые компоненты, сформировавшиеся по базальтовой вулканокластике. В отличие от рассмотренных выше группировок IA (+) (см. рис. 23) и IIIA (+) (см. рис, 26), полученных после обработки валовых определений (в пересчете на воздушно-сухую навеску) и отражающих распределение в целом вулканокластики и монтмориллонит-гидрослюдистых фаз в изученных разрезах, результаты пересчетов на БТККВ позволяют рассматривать распределение собственно гидрослюдистых компонентов (см. рис. 29). Подчеркнем, что относительно высокие фактор-

#### Таблица 30

| Компонент | Фактор<br>вращен | ные нагруз<br>ия | ки после      |                             | Факторные нагрузки после<br>вращения |            |               |  |
|-----------|------------------|------------------|---------------|-----------------------------|--------------------------------------|------------|---------------|--|
|           | Фактор<br>1      | Фактор<br>II     | Фактор<br>111 | Компонент                   | Фактор<br>І                          | Фактор<br> | Фактор<br>111 |  |
| CaO       | -0,04            | r<br>0,88        | 0,18          | Cu                          | 0,68                                 | -0,45      |               |  |
| MgO       | 0,01             |                  | 0,55          | Co                          | 0,49                                 | -0.33      | -0,72         |  |
| Na, O     | 0,10             | -0,32            | -0,77         | Pb                          | -0,34                                |            | 0,82          |  |
| к,о       | -0,26            | -0,38            | -0,03         | Ga                          | 0,49                                 |            | -0,77         |  |
| Fe        | 0,18             | 0,73             | 0,42          | Ge                          | 0,33                                 |            | 0,70          |  |
| Mn        | 0,15             | 0,84             | 0,17          | Мо                          | -0,67                                | -0,17      | -0,30         |  |
| Cr        | -0,82            | -0,11            | -0,30         | Вклад в диспер-             | 44.61                                | 12.95      | 8.69          |  |
| Ni        | -0,89            | 0,07             |               | сию, %                      | .,                                   |            | -,            |  |
| v         | 0,91             | 0,11             |               | Суммарная дис-<br>персия, % | 44,61                                | 57,56      | 66,25         |  |

#### Результаты факторного анализе для химических компонентов (в пересчете на БТККВ) отложений мезозоя и кайнозоя скв. 463, 464, 465, 465А и 466

ные значения (> 0,30) этой гидрослюдистой группировки наблюдаются в отложениях различных горизонтов нижнего мела всех без исключения скважин изученного региона. Иными словами, относительно глубокая эпигенетическая переработка базальтоидной вулканокластики, сопровождаемая выраженной гидрослюдизацией, является характерной региональной особенностью начальных стадий формирования океанского бассейна, имевших место с некоторым временным сдвигом в разных участках (см. рис. 29).

Вместе с тем ограниченное развитие вулканогенных "бурых глин" (средний миоцен-турон (?)) в северной части возвышенности Хесса (скв. 464), в составе которых гидрослюды играют существенную роль, находит отражение в весьма высоких величинах факторных значений ассоциации IB (--) (см. рис. 29). Однако эта локальная особенность не снижает регионального значения данной группировки как геохимического индикатора начальной стадии развития, по крайней мере для исследованной части Тихого океана.

Ассоциация IIA (+): CaO (0,88), Fe (0,73), Mn (0,84). Набор компонентов и анализ данных по минералогии и литологии изученных отложений позволяет считать, что данная ассоциация имеет двойственную природу, представляя собой: а) продукты глубокого изменения базальтоидной вулканокластики, что примечательно для отложений раннего мела, раннего сеномана (см. табл. 30, рис. 30); б) остаточные продукты нерастворимых накоплений на границах крупных эрозионных перерывов (см. рис. 30) в отложениях позднего мела и кайнозоя. Справедливость этих выводов подтверждается материалами по конкретному изучению геохимии и минералогии разрезов скв. 363-366.

Ассоциация IIB (–): Na<sub>2</sub>O (–0,32), K<sub>2</sub>O (–0,38), Cr (–0,11), V (–0,11), Cu (–0,45), Co (–0,33), Mo (–0,17). Избыточные количества Na<sub>2</sub>O, K<sub>2</sub>O и связанных с ними тяжелых металлов (см. табл. 30), особенности их распространения, интерпретируемые в контексте данных по минералогии и литологии (см. рис. 31), позволяют считать, что рассматриваемая группировка представлена специфичными Na-монтмориллонит-гидрослюдистыми смешаннослойными фазами, развитыми по основной и средней вулканокластике. Описание таких минеральных фаз приводится в геохимических описаниях разрезов скв. 463–466.

Подобно ряду других продуктов изменения вулканокластики (см. рис. 30) ассоциация IIB (—) характеризуются двойственной природой. Наиболее высокие величины факторных значений (около 1) наблюдаются в раннемеловых, раннесеноманских отложениях, подчеркивая геохимическую специфичность начальных стадий развития бассейна (см. рис. 31). Наряду с этим высокие факторные значения ассоциации





Факторные значения: 1 - < 0.25; 2 - 0.25 - 0.50; 3 - 0.50 - 0.75; 4 - 0.75 - 1.00; 5 - > 1.00Литология — см. на рис. 2

характерны для позднемеловых, третичных осадков, располагающихся около эрозионных границ крупных перерывов в южной части возвышенности Хесса. В этих случаях данная группировка отражает наличие остаточных (после растворения) продуктов, которые накапливались в биогенных карбонатных осадках.

Уместно подчеркнуть, что эта ассоциация не развита среди вулканокластических накоплений в северной части возвышенности Хесса, что может быть связано с относительно более основным составом этих вулканитов (см. рис. 31). Таким образом, ассо-



циация IIB (—) как парагенетическая группировка компонентов, представляющих специфические монтмориллонит-гидрослюдистые фазы, развитые по вулканокластическому материалу, является определенным индикатором геохимической эволюции седиментации этой части Тихого океана.

Ассоциация IIIA (+): CaO (0,18), Mg (0,55), Fe (0,42), Mn (0,17). Состав ассоциации и особенности ее распределения в постюрских отложениях отчетливо свидетельствуют, что она представлена мафической (базальтоидной) вулканокластикой и раз-



Рис. 29. Стратиграфическое распределение факторных значений ассоциации IB (--) (в пересчете на БТККЕ) в постюрских отложениях скважин 62-го райса

Факторные значения: 1 — < 0,10; 2 — 0,10-0,25; 3 — 0,25-0,50; 4 — 0,50-1,00; 5 — > 1,00 Литология — см. на рис. 2

витыми по ней железо-магнезиальными монтмориллонитами (см. табл. 30, рис. 32). Приведенные выше данные по геохимии осадков скв. 463—466 подтверждают этот вывод. Наряду с уже рассмотренными парагенетическими группировками, представляющими различные продукты изменения основной, в меньшей мере средней вулканокластики, данная группировка развита главным образом среди раннемеловых, ранне-








Факторные значения: 1 — < 0,25; 2 — 0,25—0,50; 3 — 0,50—0,75; 4 — > 0,75 Литология — см. на рис. 2

сеноманских отложений, знаменующих начальную стадию зволюции бассейна (см. рис. 32).

Существенная примесь базальтоидной вулканокластики и Fe-Mg-монтмориллонитовых продуктов ее изменения в разрезе северной части возвышенности Хесса (скв. 464) находит отражение в высоких величинах факторных значений ассоциаций. В ряде случаев (см. рис. 32) повышенные величины факторных значений (> 0,50) наблюдаются











Фекторные значения: 1 - < 0,25; 2 - 0,25 - 0,50; 3 - 0,50 - 0,75; 4 - 0,75 - 1,00; 5 - > 1,00Литология — см. на рис. 2

в карбонатных позднемеловых, третичных осадках, располагающихся около границ крупных эрозионных перерывов. В этом случае данная ассоциация представляет собой остаточные (после растворения) продукты, в составе которых присутствуют Mg-Fe-смектиты. Однако главное геохимическое значение ассоциации заключается в том, что она отражает раннюю стадию развития бассейна, достаточно определенно выдержанную в исследованном регионе (см. рис. 32).







Ассоциация IIIB (—): Na<sub>2</sub>O (—0,77), Cr (—0,30), Co (—0,72), Pb (—0,82), Ga (—0,77), Ge (—0,70), Mo (—0,30). Эта ассоциация представлена специфичной Na-монтмориллонитовой фазой, с которой тесно связан широкий набор тяжелых металлов. Относительно высокие величины факторных значений (> 0,50) свойственны осадкам, носящим преимущественно базальный характер, т.е. лежащим в основании отложений, разделенных крупными эрозионными перерывами (см. рис. 33). Подобные соот-



Рис. 32. Стратиграфическое распределение факторных значений ассоциации IIIA (+) (в пересчете на БТККВ) в постюрских отложениях скважин 62-го рейса

Факторные значения: 1 – < 0,10; 2 – 0,10–0,25; 3 – 0,25–0,50; 4 – 0,50–1,00; 5 – > 1,00 Литология – см. на рис. 2

ношения наряду с химизмом группировки могут свидетельствовать об остаточной (после растворения) природе данных продуктов.

Это положение справедливо как для базальных раннемеловых отложений, которыми начинается осадочная толща разреза, так и для позднемеловых-третичных осадков, сохранившихся после крупных перерывов.



## РАСПРЕДЕЛЕНИЕ СРЕДНИХ СОДЕРЖАНИЙ КОМПОНЕНТОВ

Данные о средних содержаниях компонентов для главных геохронологических подразделений исследованных разрезов скв. 463—466 изложены в предыдущих разделах. Приведенные выше особенности распределения парагенетических ассоциаций, представляющих конкретные фазы, позволяют относительно полно оценить минеральные формы рассматриваемых компонентов.

С учетом этих данных ниже обсуждается распределение содержаний компонентов в пересчете как на воздушно-сухую навеску, так и на БТККВ (для снятия разбавляющего влияния карбонатов, кремнезема, возможной терригенной примеси и приведения вещества осадка к некоторой качественно сопоставимой основе).

Распределение СаСО<sub>3</sub> (рис. 34). Обсуждавшиеся выше ассоциации IB(-) (см. рис. 24) и IIIB(-) (см. рис. 27) представляют собой соответственно эпигенетически перекристал-





Факторные значения: 1 - < 0.25; 2 - 0.25 - 0.50; 3 - 0.50 - 0.75; 4 - 0.75 - 1.00; 5 - > 1.00Литология — см. на рис. 2

лизованную и слабо измененную формы карбонатов как продуктов преобразования биогенного, преимущественно фораминиферово-наннофоссилиевого материала. Из анализа особенностей распределения средних содержаний нормативной молекулы CaCO<sub>3</sub> (см. рис. 34) следует, что:

 а) в раннемеловых отложениях содержание CaCO<sub>3</sub> относительно невелико и редко превышает 80% в связи с разбавляющим влиянием вулканогенного и кремнистого материала;





Рис. 34. Стратиграфическое распределение СаСО, (среднее содержание, нормативная молекула) в постюрских отложениях скважин 62-го рейса

Содержание (вес. %) : 1 - < 25; 2 - 25-50; 3 - 50-75; 4 - 75-90; 5 - > 90 Литология - см. на рис. 2

б) позднемеловые и раннетретичные отложения характеризуются максимальными количествами CaCO<sub>3</sub> (> 90%), что может свидетельствовать о положении изученных районов океана выше уровня карбонатной компенсации того времени; особая роль при этом принадлежит геохронологическим интервалам, в течение которых отдельные участки находились в экваториальной зоне высокой биологической продуктивности при общем направленном к северу движении Тихоокеанской плиты [Lancelot, Larson, 1975; Lancelot, 1978; Andel, 1974];



в) отложения позднего миоцена и особенно плейстоцена отличаются относительно пониженными количествами CaCO<sub>3</sub> из-за разбавляющего воздействия кремнистых компонентов и вулканокластики, что связано с активизацией островного вулканизма в это время и с нахождением данного региона в северной олиготрофной зоне Тихого океана;

г) в отдельных районах, например в северной части возвышенности Хесса (скв. 464), карбонатные осадки в течение позднего мела и кайнозоя накапливались в весьма ограниченном количестве (см. рис. 34) из-за блокового опускания этих участков ниже глубины карбонатной компенсации при доминирующем поступлении вулканогенных компонентов из местных источников.

Распределение SiO<sub>2</sub> (рис. 35). Формы свободной, алюмосиликатной и силикатной SiO<sub>2</sub> в постюрских осадках обсуждались при рассмотрении геохимии разрезов скв. 463—466, а также ассоциации IIIA (+) (см. рис. 26). Отметим основные особенности распределения валовых количеств SiO<sub>2</sub> (см. рис. 35):



Рис. 35. Стретигрефическое респределение SiO<sub>2</sub> (среднее содержание) в постюрских отложениях скважин 62-го рейса

Содержание (вес. %) : 1 — < 2; 2 — 2—25; 3 — 25—50; 4 — > 50 Литология — см. на рис. 2

а) отложения раннего мела, раннего сеномана характеризуются, как правило, относительно повышенными количествами SiO<sub>2</sub>, находящейся главным образом в форме основной вулканокластики, глинистых, цеолитных продуктов ее изменения и свободного кремнезема — как остатков кремнистых организмов. Недостаточно равномерный отбор образцов керна (скв. 465А и 466) несколько снижает выраженность этой тенденции;

б) в течение позднего мела отмечаются интервалы относительно повышенного кремненакопления. Широкое развитие кремней в отложениях турона—позднего кампана



(район гор Маркус-Неккер) можно рассматривать преимущественно как обогащение остаточными (после растворения) продуктами;

в) кремнистые накопления зоцена (в частности, раннего зоцена, скв. 463) представлены в сравнительно слабо выраженном виде из-за реликтового характера этих отложений, сохранившихся после крупных перерывов;

г) в осадках позднего миоцена—плейстоцена наблюдаются относительно повышенные количества SiO<sub>2</sub>, связанные как с биогенным накоплением кремнезема, так и с активизацией поступления вулканогенного материала.

Распределение Fe (рис. 36). Выше обсуждалось распределение парагенетических ассоциаций, в составе которых существенная роль принадлежит Fe (см. рис. 23, 26, 28, 30, 32). В целом наибольшее распространение имеют соединения Fe, входящие в состав основной вулканокластики и продуктов ее постседиментационной переработки, гидроокисные выделения, железосодержащие глинистые минералы, карбонаты, суль-



Рис. 36. Стратиграфическое распределение Fe (среднее содержание в пересчете на БТККВ) в постюрских отложениях скважин 62-го рейса

Содержание (вес. %) : 1 — < 1; 2 — 1—5; 3 — 5—10; 4 — 10—25; 5 — > 25 Литология — см. на рис. 2

фиды (см. данные по геохимии разрезов скв. 463—466). В базальных частях отложений раннего мела встречаются соединения Fe гидротермально-эксгаляционной природы.

Из анализа распределения средних содержаний Fe (в пересчете на БТККВ) можно отметить ряд особенностей (см. рис. 36):

 а) раннемеловые – раннесеноманские отложения начальных стадий формирования бассейна характеризуются относительно высокими содержаниями Fe, которые связаны с существенной примесью вулканогенного материала;



б) осадки позднего мела по содержанию Fe латерально неоднородны: в районе гор Маркус-Неккер наблюдаются относительно высокие количества Fe (> 10%), тогда как в южной части возвышенности Хесса (скв. 465, 465А и 466) количество Fe не превышает 5%. Такие различия связаны с проявлениями локального вулканизма. Это положение особенно хорошо может быть проиллюстрировано на примере северной части возвышенности Хесса (скв. 464), где в связи с активным базальтоидным вулканизмом в течение позднего мела-плейстоцена накапливались вулканогенные осадки с содержаниями Fe более 25%;

в) относительно повышенные содержания Fe (>5%) в осадках плиоцена—плейстоцена могут быть объяснены заметной активизацией островного вулканизма в это время (см. рис. 36).

Распределение Mn (рис. 37). Формы нахождения Mn в исследуемых отложениях во многом близки к фазам, содержащим железо, — существенно преобладают кластические материалы вулканогенной природы и продукты их диа-эпигенетической переработки: гидроокислы, глинистые минералы, карбонаты (см. ассоциации IA (+),



Рис. 37. Стратиграфическое распределение Mn (среднее содержание в пересчете на БТККВ) в постюрских отложениях скважин 62-го рейса

Содержание (вес. %) : 1 – < 0,25; 2 – 0,25–0,5; 3 – 0,5–1,0; 4 – 1,0–2,5; 5 – > 2,50 Литология – см. на рис. 2

рис. 23; IIIA (+), рис. 26; IA (+), рис. 28; IIA (+), рис. 30; IIIA (+), рис. 32). Подробные сведения о распределении Мп в осадках даны при описании геохимии разрезов скв. 463-466.

Отмечаются следующие главные особенности распределения содержаний Mn (в пересчете на БТККВ) в постюрских осадках (см. рис. 37):

 а) распределение содержаний Mn с определенностью отражает, с одной стороны, наличие заметных количеств базальтоидной вулканокластики, которая особенно интен-



сивно накапливалась в осадках раннего мела района гор Маркус-Неккер (скв. 463), с другой — обогащенность остаточными продуктами в отложениях, сохранившихся после крупных перерывов (ранний зоцен, поздний олигоцен — скв. 463; поздний палеоцен — скв. 465 и 465А);

б) обогащенность Mn вулканогенных продуктов основного состава наглядно проявляется на примере серии "бурых глин" позднего мела—среднего миоцена, локально развитой в северной части возвышенности Хесса (скв. 464). В аккумулации этих отложений определенная роль, возможно, принадлежит подводным эксгаляциям (см. рис. 37);

в) для большей части исследованных разрезов не отмечается латерально выдержанных горизонтов с относительно высокими концентрациями Mn. Исключение составляют плиоцен-плейстоценовые осадки. Активизация островного вулканизма в плиоцен-плейстоценовое время находит отражение в относительно высоких содержаниях Mn (> 0,50%). Подчеркнем, что в районе гор Маркус-Неккер (скв. 463) эта геохимическая особенность проявляется ярче, чем на возвышенности Хесса (см. рис. 37).



Рис. 38. Стратиграфическое распределение Р (среднее содержание в пересчете на БТККВ) в постюрских отложениях скважин 62-го рейса

Содержание (вес. %) : 1 - < 0.25; 2 - 0.25 - 0.5; 3 - 0.5 - 1; 4 - 1 - 2; 5 - > 2Литология — см. на рис. 2

Распределение Р (рис. 38). Формы нахождения в исследуемых осадках обсуждались выше, при рассмотрении ассоциаций IA (+) (см. рис. 23), IIB (-) (см. рис. 25) и IIIA (+) (см. рис. 26), а также данных по неорганической геохимии разрезов скв. 463-466. В целом для фосфора характерно нахождение в составе основной вулканокластики и продуктов ее постседиментационного преобразования: монтмориллонит-гидрослюдистых фаз, гидроокислов Fe и Mn, фосфатов Ca, Al, Fe, Mn и других металлов. Эти соединения могут присутствовать как в форме самостоятельных фаз, так и в виде



примесей, развитых по отмеченным продуктам изменения. Особое место занимают биогенные фосфатные выделения — остатки рыб и др. При рассмотрении распределения средних содержаний фосфора (в пересчете на БТККВ) в толще постюрских отложений можно отметить следующие особенности (см. рис. 38):

 а) раннемеловые и раннесеноманские отложения, знаменующие начальный этап развития бассейна, как правило, характеризуются относительно высокими содержаниями фосфора (> 1,0%), присутствующего преимущественно в форме основной вулканокластики и продуктов ее применения;

б) позднемеловые отложения отличаются относительно высокими концентрациями фосфора, природа которых двояка. С одной стороны, они отражают общую повышенную биологическую продуктивность обстановок позднемеловой седиментации с геохронологическими интервалами максимальной биологической продуктивности, когда определенный участок пересекал экваториальную зону при направленном на север движении Тихоокеанской плиты, с другой — на границах крупных перерывов наблю-



Рис. 39. Скорости седиментации для основных геохронологических подразделений разрезов постюрских отложений скважин 62-го рейса

Скорость (мм  $\cdot 10^{-3} \cdot год^{-1}$ ) : 1 - < 2,5; 2 - 2,5 - 5; 3 - 5 - 10; 4 - 10 - 20; 5 - 20 - 40; 6 - > 40Литология – см. на рис. 2

даются относительно высокие содержания фосфора в остаточных (после растворения) биогенных фосфатных накоплениях;

в) в кайнозойских отложениях высокие концентрации фосфора могут рассматриваться в одних случаях как накопления остаточных, нерастворимых продуктов на границах крупных перерывов (ранний – средний зоцен, поздний олигоцен, поздний миоцен – скв. 463; средний – поздний зоцен, ранний плиоцен – скв. 466), в других – как обогащение в связи с активизацией вулканизма в плиоцене – плейстоцене;



г) наиболее ярким примером, иллюстрирующим связь относительно высоких содержаний фосфора (более 1%) с вулканокластическими накоплениями базальтоидного состава, является серия "бурых глин" среднего миоцена—позднего мела, локально развитая в северной части возвышенности Хесса (скв. 464).

#### СРЕДНИЕ СКОРОСТИ АККУМУЛЯЦИИ КОМПОНЕНТОВ

В этом разделе дается синтез данных о скоростях аккумуляции, которые позволили бы охарактеризовать геохимическую эволюцию седиментации в постюрское время. Скорости седиментации: (рис. 39). Скорости накопления осадков в океане (мм. 10<sup>-3</sup> · год<sup>-1</sup>) могут быть разделены на: а) низкие (< 2,5), б) средние (2,5–10),

в) высокие (10-20), г) весьма высокие (20-40), д) максимальные (> 40). Такое подразделение не противоречит известным данным по скоростям седиментации



Рис. 40. Скорости аккумуляции СаСО<sub>з</sub> для основных геохронологических подразделений разрезов постюрских отложений скважин 62-го рейса

Скорость (мг · см <sup>-2</sup> · 10 <sup>-3</sup> · год <sup>-1</sup>): 1 - < 200; 2 - 200 - 1000; 3 - 1000 - 2000; 4 - 2000 - 5000; 5 - > 5000

Литология - см. на рис. 2

Мирового океана [Arrhenius, 1963, 1967; Безруков, Романкевич, 1970; Богданов, Чеховских, 1979; Лисицын, 1974, 1978; Tiercelin, Faure, 1978].

Анализ скоростей седиментации постюрских отложений исследуемых районов позволяет отметить (см. рис. 39), что:

 а) наиболее высокие величины скоростей седиментации для каждого участка наблюдаются в двух геохронологических интервалах: на начальной стадии формирования бассейна, охватывающей различные отрезки раннего мела, и во время нахождения



изученных участков в экваториальной зоне высокой биологической продуктивности при общем направленном к северу движении Тихоокеанской плиты. Если начальный этап развития всей области выражен достаточно определенно (скорость линейной седиментации более 20 мм · 10<sup>-3</sup> · год<sup>-1</sup>), то отложения, которые накапливались в экваториальной зоне высокой биологической продуктивности, сохранились лишь в районе гор Маркус-Неккер (скв. 463; см. рис. 39), где для маастрихта скорости седиментации составляют 27,2 мм · 10<sup>-3</sup> · год<sup>-1</sup>. В других местах эти интервалы представлены лишь реликтами, сохранившимися после перерывов;

б) в течение позднего мела накапливались осадки, характеризующиеся в целом средними (до высоких) скоростями седиментации (2,5–20 мм · 10<sup>-3</sup> · год<sup>-1</sup>);

в) в кайнозое происходило накопление осадков с низкими скоростями (меньше 2,5 мм · 10<sup>-3</sup> · год<sup>-1</sup>). Исключение могут составлять южные участки возвышенности Хесса (скв. 466; см. рис. 39), где на скорости собственно седиментации накладываются локальные явления переотложения, подводных оползней и др.

Скорости аккумуляции СаСО<sub>3</sub> (рис. 40). Особенности распределения средних содержаний и формы СаСО<sub>3</sub> обсуждались выше (см. рис. 24, 27, 34). В результате



Рис. 41. Скорости аккумуляции SiO<sub>2</sub> для основных геохронологических подразделений разрезов постюрских отложений скважин 62-го рейса

Скорость (мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>): 1 - < 1; 2 - 1 - 10; 3 - 10 - 100; 4 - 100 - 1000; 5 - 1000 - 10002000;  $\dot{6} - > 2000$ 

Литология - см. на рис. 2

анализа распределения скоростей аккумуляции CaCO<sub>3</sub> в постюрское время<sup>1</sup> можно отметить следующее (см. рис. 40) :

а) начальные стадии формирования бассейна (ранний мел) отличаются высокими (до максимальных) скоростями аккумуляции СаСО3: обычно более 2000, нередко более 5000;

<sup>&</sup>lt;sup>1</sup> Здесь и делее в тексте скорости аккумуляции компонентов измеряются в мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>.



б) как отмечалось при рассмотрении скоростей седиментации, геохронологические интервалы, отвечающие времени прохождения данного участка дна океана через экваториальную зону высокой биологической продуктивности при общем направленном к северу движении Тихоокеанской плиты, отличаются максимальными скоростями накопления CaCO<sub>3</sub>. Так, в районе гор Маркус-Неккер такие скорости составляют 1770. В других районах эквивалентные осадки эродированы (см. рис. 40);

в) в течение всего позднего мела скорости накопления CaCO<sub>3</sub> не были ниже 200 и нередко превышали 2000;

г) в кайнозое отмечаются относительно низкие скорости накопления CaCO<sub>3</sub>, редко превышающие 500 (см. рис. 40).

Скорости аккумуляции SiO<sub>2</sub> (рис. 41). Формы нахождения и распределения средних содержаний SiO<sub>2</sub> в исследуемых отложениях рассматривались выше (см. рис. 26, 35). Подробные данные по минералогии и геохимии приводятся в описанных разрезах по скв. 463—466. Подчеркнем, что характерны три главные формы SiO<sub>2</sub> в осадках: 1) свободная SiO<sub>2</sub>, преимущественно опал-А, опал-СТ, халцедон, квари:





Рис. 42. Скорости аккумуляции Al<sub>2</sub>O<sub>3</sub> для основных геохронологических подразделений разрезов постюрских отложений скважин 62-го рейса

Скорость (мг · см <sup>-2</sup> · 10 <sup>-3</sup> · год <sup>-1</sup>): 1 - < 0.5; 2 - 0.5 - 5; 3 - 5 - 10; 4 - 10 - 50; 5 - 50 - 100; 6 - > 100Литология – см. на рис. 2

 алюмосиликатная, главным образом вулканокластика и продукты ее изменения – монтмориллонитовые, гидрослюдистые, хлорит-каолинитовые, цеолитовые фазы;
силикатная – вулканокластика и продукты ее изменения.

Из анализа распределения средних скоростей аккумуляции SiO<sub>2</sub> в главных геохроно-



логических подразделениях разреза можно сделать следующие выводы (см. рис. 41) :

а) наиболее высокие скорости аккумуляции валовых количеств SiO<sub>2</sub> (больше 100, нередко выше 2000) отмечаются в отложениях раннего мела, раннего сеномана, знаменующих начальные стадии развития бассейна. В этих осадках существенная роль принадлежит вулканокластическим материалам основного состава, продуктам их изменения и биоморфным остаткам SiO<sub>2</sub>;

б) в течение позднего мела относительно высокие скорости аккумуляции SiO<sub>2</sub> характерны для тех интервалов, когда накопление осадков происходило в экваториальной зоне высокой биологической продуктивности при направленном к северу движении Тихоокеанской плиты, например, в маастрихте в районе гор Маркус-Неккер



Рис. 43. Скорости аккумуляции Fe для основных геохронологических подразделений разрезов постюрских отложений скважин 62-го рейса

Скорость (мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>): 1 - < 1; 2 - 1 - 5; 3 - 5 - 10; 4 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 5 - 20 - 40; 6 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20; 7 - 10 - 20> 40

Литология - см. на рис. 2

(скв. 463). Вместе с тем в позднем мелу наблюдаются интервалы сравнительно повышенных скоростей накопления SiO<sub>2</sub> в отложениях, развитых близ крупных перерывов: ранний-средний турон (скв. 463). В этих случаях остаточная природа накоплений SiO<sub>2</sub> является главной причиной, обусловливающей высокие скорости аккумуляции:

в) в третичное время относительно высокие скорости аккумуляции SiO<sub>2</sub> отмечены в позднем плиоцене-плейстоцене, когда происходила усиленная садка диатомовых, радиоляриевых илов, сопровождаемая повышением вулканической активности.



Скорости аккумуляции  $Al_2O_3$  (рис. 42). Алюмосиликатные компоненты, главным образом основная вулканокластика и продукты ее изменения, являются теми формами, в которых преимущественно присутствует в осадках  $Al_2O_3$  (см. рис. 23, 26, а также разделы, посвященные геохимии разрезов скв. 463—466). Анализ распределения скоростей аккумуляции  $Al_2O_3$  в исследуемых отложениях позволяет отметить (см. рис. 42), что:

 а) наиболее высокие (более 50—100) скорости характерны для раннемеловых отложений, являющихся базальными осадками и отражающих ранние стадии развития бассейна (см. рис. 42);

б) в позднем мелу повышенные скорости накопления Al<sub>2</sub>O<sub>3</sub> (10—50) установлены в осадках, развитых преимущественно на границах крупных эрозионных перерывов. Остаточный характер глиноземистых продуктов в этих отложениях достаточно определен;

в) в третичное время относительно высокие скорости аккумуляции Al<sub>2</sub>O<sub>3</sub> отражают главным образом формы поступления вулканокластического материала в осадки (см. рис. 42).



Рис. 44. Скорости аккумуляции Mn для основных геохронологических подразделений разрезов посторских отложений скважин 62-го рейса

Скорость (мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>): 1 - < 0,1; 2 - 0,1 - 0,2; 3 - 0,2 - 0,5; 4 - 0,5 - 1; 5 - 1 - 3; 6 - > 3

Литология - см. на рис. 2

Скорости аккумуляции Fe (рис. 43). Формы нахождения и распределения средних содержаний Fe в исследуемых осадках рассматривались выше (см. рис. 23, 26, 28, 30, 32, 36); более подробные данные приведены в разделах, посвященных скв. 463—466. Важно отметить, что железо присутствует в осадках главным образом в виде основной вулканокластики и продуктов ее изменения — монтмориллонитов, гидрослюд, хлоритов, гидроокисных соединений, реже карбонатов, сульфидов. Наряду с этим встречаются остаточные аутигенные гидроокисные и алюмосиликатные фазы железа, а в базальных частях разреза — продукты гидротерм и эксгаляций. Рассмотре-



ние распределения средних скоростей аккумуляции Fe позволяет отметить ряд особенностей (см. рис. 43) :

а) раннемеловые отложения характеризуются максимальными в истории постюрской седиментации скоростями аккумуляции Fe: как правило, более 20, а для районов гор Маркус-Неккер (скв. 463) и северной части возвышенности Хесса (скв. 464) более 50 (до 100). Укажем, что скорость аккумуляции Fe в пелагических осадках открытого океана не превышает 2,4—9 [Mac Arthur, Elderfield, 1977], а для металлоносных осадков Восточно-Тихоокеанского поднятия составляет 63—110 [Boström, 1973; Bender et al., 1971]. Сопоставление этих данных позволяет допускать определенную долю поступления Fe из гидротермальных, эксгаляционных источников на ранних стадиях формирования бассейна:

б) в позднем мелу скорости аккумуляции Fe сравнительно редко превышают 5. Исключение составляют осадки двух типов (см. рис. 43): фиксирующие интервалы нахождения района в зоне высокой биологической продуктивности, например маастрихт гор Маркус-Неккер (скв. 463), и осадки, развитые близ контактов крупных эрозионных перерывов, в которых накопление Fe имеет остаточную природу (турон в разрезе скв. 463);

в) в третичное время скорости накопления Fe не превышали величин, известных для пелагических областей открытого океана: 2,4–9. [Mac Arthur, Elderfield, 1977]. Относительно повышенные значения скоростей в плиоцене-плейстоцене южной части возвышенности Хесса (скв. 466) отражают усиление поступления вулканокластического материала с окружающих островов. Для позднемеловых-плиоценовых осадков северной части возвышенности Хесса (скв. 464) роль вулканизма в накоплении Fe особенно показательна (см. рис. 43).

Скорости аккумуляции Mn (рис. 44). Выше (см. рис. 23, 26, 28, 30, 32, 37) были освещены формы нахождения и распределения средних содержаний Mn в постюрских отложениях исследованного региона. Подробные данные приведены при рассмотрении разрезов скв. 463—466. Подобно Fe главная форма нахождения Mn в осадках — основная вулканокластика и продукты ее изменения (монтмориллонитовые, гидрослюдистые, хлоритовые фазы), гидроокислы, в меньшей мере карбонаты. Отметим особенности распределения средних скоростей аккумуляции Mn (см. рис. 44):

а) раннемеловые отложения отличаются наиболее высокими скоростями накопления Мп, обычно бо́льшими 1, иногда — до 8,1 (интервал накопления туфовых известняков раннего апта гор Маркус-Неккер, скв. 463). Для пелагических осадков открытого океана скорости накопления Mn составляют 0,4—4 [Mac Arthur, Elderfield, 1977], а для металлоносных осадков Восточно-Тихоокеанского поднятия — 24—35. Сопоставление этих величин позволяет допустить, как и при рассмотрении скоростей накопления Fe, поступление определенной доли Mn с гидротермами и эксгаляциями в начальные этапы формирования бассейна;

б) в позднем мелу сравнительно высокие скорости накопления Мп отмечены для интервалов, когда участок океанского дна пересекал экваториальную зону высокой биологической продуктивности при направленном к северу движении Тихоокеанской плиты: для раннего маастрихта в районе гор Маркус-Неккер (скв. 463). В менее явном виде проявляется увеличение скорости накопления Мп в отложениях, развитых близ контактов крупных эрозионных перерывов. Повышенные скорости в этих геохронологических интервалах отмечались также и для Fe, Al<sub>2</sub>O<sub>3</sub> и SiO<sub>2</sub>, остаточная природа накопления которых достаточна определенна;

в) в третичное время скорости аккумуляции Mn не превышали величин, известных для пелагических осадков открытого океана: менее 1.

### ГЕОХИМИЧЕСКАЯ ЭВОЛЮЦИЯ СЕДИМЕНТАЦИИ

Анализ данных об ассоциациях главных компонентов и тяжелых металлов как формах их нахождения в осадках, о распределении средних содержаний и скоростей аккумуляции компонентов, проведенный в контексте информации по минералогии, литологии и геологическим особенностям отложений мезозоя и кайнозоя, позволяет наметить главные этапы геохимической эволюции постюрской седиментации районов гор Маркус-Неккер и возвышенности Хесса.

1-й этап — ранний мел (раннеокеанский). Несмотря на различную геохронологическую продолжительность этого этапа для исследованных районов, седиментологическая и геохимическая сущность этого раннеокеанского интервала истории в целом сохраняется. Наиболее полно события этапа зарегистрированы в разрезе скв. 463 (горы Маркус-Неккер); в районах возвышенности Хесса они представлены сокращенно либо частично уничтожены более поздними эрозионными перерывами.

Фаза: поздний баррем—ранний апт (начальная часть). В течение этой фазы накапливались кластические известняки турбидитной природы и тонкозернистые карбонатные осадки. Среди обломков широко встречаются фрагменты раковин пелеципод, кораллов, водорослей, базальтовые частицы. Наблюдаются остатки радиолярий (до 50%), основного стекла (до 20%), глинистых продуктов (иллит-смектит), изменения вулканокластики. В осадках встречены остатки переотложенных позднеюрских радиолярий, что позволяет оценить нижний возраст разрушавшихся пород.

Накопление осадков происходило в относительно ограниченном мелководном бассейне с биогермными постройками, коралловыми рифами, заметной вулканической деятельностью. Эти особенности находят отражение в химизме осадков, характере ассоциаций главных компонентов с тяжелыми металлами: наибольшая часть их присутствует в форме основной вулканокластики и иллит-смектитовых продуктов ее изменения (см. рис. 23–33). Примечательна высокая линейная скорость седиментации в это время (41, 16 мм · 10<sup>-3</sup> · год<sup>-1</sup>; см. рис. 39) и аккумуляции главных компонентов осадка (см. рис. 40–44). Столь высокие скорости седиментации отмечаются для начальных стадий развития протоокеанских бассейнов [Tiercelin, Faure, 1978].

Важно подчеркнуть, что в начале раннего апта происходило некоторое возрастание глубоководности осадков, относительное увеличение в них количества вулканокластического материала, что отражено в возросших концентрациях Mn, Fe, тяжелых металлов и в скоростях их аккумуляции. Средние скорости аккумуляции Mn (5,8) и Fe (65,2) позволяют допустить поступление в бассейн определенной доли этих металлов из гидротермальных источников [Boström, 1973; Bender et al., 1971].

В смежных районах — в восточной части гор Маркус-Неккер (скв. 313 и 171) и на возвышенности Хесса (скв. 464—466, 310) в течение позднего баррема—раннего апта были, по-видимому, широко развиты базальтовые вулканические образования.

Фаза: ранний апт (средняя часть). В это время накапливались карбонатные осадки нередко турбидитной природы, обогащенные основным туфогенным материалом и органическим сапропелевидным веществом (С<sub>орг</sub> до 5–10%). Характерной особенностью осадков этого времени является относительно возросшее (до 30–40%) количество базальтоидной вулканокластики и органического вещества по сравнению с более древними осадками. Основная часть Mn, Fe и ассоциирующих тяжелых металлов образует прочную ассоциацию с органическим веществом в смектит-иллитовых продуктах изменения базальтоидной вулканокластики, в форме металлоорганических соединений, а также собственно смектит-иллитовых фаз (см. рис. 23, 25, 26, 28–33).

В течение этого времени скорости аккумуляции SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe и ассоциирующих тяжелых металлов отличались максимальными для мезозоя и кайнозоя значениями (см. рис. 41—44). Величины скоростей накопления Fe (96,8) и Mn (7,7) позволяют допустить по крайней мере частичный привнос гидротермального материала в бассейн седиментации.

Накопление осадков происходило в относительно неглубоководном ограниченном стагнированном бассейне типа депрессионной впадины с затрудненным водообменом и дефицитом кислорода. В таком бассейне высокими темпами накапливались наннофоссилиевые карбонатные илы с обломками раковин моллюсков, значительными количествами сапропелевого органического материала, растительного детрита, базальтоидной вулканокластики. Подобные осадки известны в разрезах на поднятии Шатского, в котловине Науру и в других районах Тихого, Атлантического и Индийского океанов [Schlanger, Jenkyns, 1976; Arthur, Schlanger, 1979].

В районе возвышенности Хесса (скв. 464—466) в течение рассматриваемого геохронологического интервала накапливались вулканогенные базальтоидные образования, преимущественно лавы. Однако осадки, формационно близкие рассмотренным выше туфогенным известнякам с высоким содержанием органического вещества, накапливались в течение раннего альба в северной части возвышенности Хесса (скв. 464). В южной же части (скв. 465, 465А) в позднем альбе—раннем сеномане накапливались оливково-серые карбонатные отложения с существенным содержанием сапропелевого органического вещества и базальтовой вулканокластики. Геохимические параметры, скорости седиментации и аккумуляции компонентов таких осадков сопоставимы с тем, что отмечалось для раннеаптских отложений западной части гор Маркус-Неккер.

Таким образом, несмотря на формационную, фациальную и геохимическую общность туфогенных карбонатных отложений, обогащенных сапропелевым материалом и знаменующих раннеокеанский этап развития бассейна, их возраст и геохронологические объемы существенно различны. Накопление подобных осадков в центральной области северо-западной части Тихого океана происходило в течение раннего мела разновременно в ограниченных и пространственно разобщенных бассейнах.

Фаза: ранний апт (поздний интервал) — поздний альб. В западной части гор Маркус-Неккер (скв. 463) в это время накапливались фораминиферово-наннофоссилиевые осадки с переменными количествами остатков радиолярий и с циклической перемежаемостью разноокрашенных разностей. Примесь базальтового вулканокластического материала в осадках не моложе позднего апта достигает 10%. Отмечаются относительно высокие концентрации Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и связанных с ними тяжелых металлов, которые встречаются главным образом в форме базальтоидной вулканокластики, преобразованной в железо-магнезиальные иллит-смектитовые фазы. При снятии карбонатного разбавления более определенно выявляется роль гидроокислов Fe и Mn (см. рис. 23, 25, 26, 28–33). В распределении скоростей седиментации наблюдается их отчетливое снижение от раннего апта к началу позднего альба (см. рис. 39). Снижение скоростей седиментации, сопровождаемое сокращением вулканической активности, к началу позднего альба отчетливо проявляется в существенном уменьшении скоростей накопления Al<sub>2</sub>O<sub>3</sub>, Fe и Mn (см. рис. 42–44).

Накопление осадков происходило в обстановке относительно неглубокого моря, значительно выше глубины карбонатной компенсации того времени. Море изобиловало существенно пенепленизированными поднятиями, рифовыми постройками. С позднего апта до позднего альба имело место прогрессивное углубление бассейна, сопровождавшееся сокращением вулканической деятельности. Седиментация проходила в обстановке нормального кислородного режима.

Таким образом, фаза от поздних частей раннего апта до начала позднего альба в западном районе гор Маркус-Неккер является завершающей для раннемелового, начального этапа развития данной части Тихого океана.

Важно подчеркнуть, что в северном районе возвышенности Хесса (скв. 464) данная фаза выражена в неявном виде. На седиментацию, присущую данной фазе, в ее относительно полном развитии (скв. 463) накладываются особенности, связанные с пересечением этим участком экваториальной зоны высокой биологической продуктивности в течение альба, возможно, раннего сеномана (?).

В южной части возвышенности Хесса (скв. 465, 465А, 466) формационным и фациальным эквивалентом данной фазы с близкими геохимическими характеристиками является ранний сеноман. Значительная часть осадков этой фазы эродирована в результате крупного (средний сеноман-коньяк) перерыва. В южной части возвышенности Хесса (скв. 466) эрозионное воздействие перерыва проявилось интенсивнее — сохранились лишь осадки позднего альба, обогащенные базальтоидной вулканокластикой и сапропелевым материалом. Иными словами, в этом разрезе уцелели лишь осадки, представляющие начальную фазу протоокеанского этапа развития бассейна.

2-й этап — позднемеловой. В течение позднего мела накапливались преимущественно фораминиферово-наннофоссилиевые (в меньшей мере наннофораминиферовые) осадки с заметным количеством кремнистых остатков, преобразованные в различные модификации свободного кремнезема: опал (A; C-T), халце́дон, кварц. Примечательны мало изменяющиеся по разрезу содержания CaCO<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и ассоциирующих тяжелых металлов, присутствующих в форме преимущественно остаточных продуктов переработки вулканокластического материала и гидроокисных соединений Fe, Mn (см. рис. 23—37). Особенностью этого этапа является сравнительно большое число эрозионных перерывов, геохронологическая продолжительность и региональная выдержанность которых обусловлены локальными структурными и палеоокеанографическими условиями. Осадки накапливались в пелагической обстановке открытого океана, зоны низких широт.

Ранняя фаза позднемелового этапа. В относительно полном разрезе скв. 463 в западной части гор Маркус-Неккер фаза представлена осадками позднего альба-коньяка. В пределах возвышенности Хесса (скв. 464-466) эти осадки в значительной мере эродированы. В южной части возвышенности Хесса (скв. 465, 465А, 466) сохранились реликты фораминиферово-наннофоссилиевых осадков позднего турона-коньяка, тогда как в ее северной части (скв. 464) осадки этой фазы представлены локально развитыми относительно глубоководными бурыми вулканогенными глинами резко сокращенной мощности.

Для осадков разреза скв. 463, сложенных фораминиферово-наннофоссилиевыми илами, характерны обычные для карбонатных пелагических осадков океана содержания и скорости аккумуляции Mn, Fe и связанных с ними тяжелых металлов. Характерно возрастание темпов накопления CaCO<sub>3</sub> от позднего альба—раннего сеномана к турону: от 1268 до 4014 мг · см<sup>-2</sup> · 10<sup>-3</sup> · год<sup>-1</sup>, что может быть связано с вхождением этого района в южную часть экваториальной зоны высокой биологической продуктивности. Однако в связи с эрозионными перерывами эта тенденция для ряда интервалов нарушается.

Перерыв в осадконакоплении регионально выдержан, однако его геохронологическая емкость латерально меняется. В западной части гор Маркус-Неккер 138 перерыв охватывает интервал сантон—ранний кампан, в северной части возвышенности Хесса — средний—поздний сеноман (?), а в южной части возвышенности геохронологическая амплитуда перерыва максимальна: поздний альб—ранний сеноман—поздний коньяк, причем внутри этого интервала наблюдаются невыдержанные в пределах возвышенности Хесса реликтовые отложения позднего турона—раннего сантона. Осадки, развитые близ эрозионных контактов перерыва, отличаются повышенными количествами Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, Fe и продуктов глубокого изменения вулканокластического материала (глинистые фазы, гидроокислы Fe, Mn и ассоциирующих тяжелых металлов), имеющие остаточную природу (см. рис. 23–38).

Сравнительно большая геохронологическая емкость перерыва, его региональная выдержанность свидетельствуют о связи с активизацией позднемеловых экваториальных (пассатных) течений и их северо-западных ветвей [Luyendyk et al., 1972].

Поздняя фаза позднемелового этапа. Геохимические характеристики, минеральный состав и литология осадков, накапливающихся начиная с раннего сантона, относительно стабильны и мало отличаются от характеристик фораминиферово-наннофоссилиевых пелагических илов открытого океана. Относительно повышенные содержания Р и Al<sub>2</sub>O<sub>3</sub> (в меньшей мере Fe, Mn, SiO<sub>2</sub>) в этих осадках (см. рис. 23–38) указывают на заметное количество остаточных (после растворения) продуктов.

В западном районе гор Маркус-Неккер резко выделяются отложения раннего маастрихта, для которых характерны высокие скорости седиментации (см. рис. 39) и аккумуляции  $CaCO_3$ ,  $SiO_2$ ,  $Al_2O_3$ , Fe, Mn, P и ассоциирующих тяжелых металлов (см. рис. 40–44). Эти данные интерпретируются как свидетельство о пересечении западным районом в раннем маастрихте экваториальной зоны высокой биологической продуктивности [Lancelot, Larson, 1975; Lancelot, 1978; Andel, 1974] и биогенной инкорпорации тяжелых металлов.

**3-й этап — кайнозойский.** В кайнозое происходит резкое изменение геохимической истории седиментации, которая после олигоцена характеризуется чертами, свойственными современному периоду.

Для большей части рассматриваемого региона осадки, которые характеризовали бы переход от мезозоя к кайнозою, не сохранились. Лишь на сравнительно ограниченном участке в южной части возвышенности Хесса (скв. 465, 465А; см. рис. 23–38) наблюдается непрерывный разрез от отложений позднего кампана до позднего палеоцена. На этом участке в палеоцене накапливались пелагические наннофоссилиевые илы с малой примесью радиоляриевых и других кремнистых остатков. Осадки характеризуются содержаниями главных компонентов и тяжелых металлов, типичными для биогенных карбонатных илов открытого океана (см. рис. 23—38). Несколько повышенные скорости аккумуляции Mn и P (см. рис. 44, а также приведенные выше данные по геохимии разреза скв. 465 и 465А) могут быть объяснены наличием ощутимых количеств тонкой базальтовой вулканокластики. Таким образом, по имеющимся геохимическим параметрам в этом районе переход от мезозоя к кайнозою не был ознаменован сколько-нибудь примечательными геологическими событиями. Но в целом для северо-западной части Тихого океана граница между мезозоем и кайнозоем представлена широкорегиональным перерывом, охватывающим палеоцен в западной части гор. Маркус-Неккер и поздний маастрихт-ранний зоцен в южной части возвышенности Хесса.

Отложения зоцена (раннего-среднего в скв. 463; среднего-позднего в скв. 466) представлены фораминиферово-наннофоссилиевыми осадками, имеющими реликтовый характер и обогащенными компонентами остаточной природы (Fe, Mn, P; см. рис. 36–38). Изучение изотопов кислорода, палеотемпературные [Frakes, Kemp, 1972, 1973] и палеоокеанографические [Berggren, Hollister, 1977] реконструкции указывают, что в Тихом океане до широты 60° в эоцене господствовал субтропический гумидный климат, резко изменившийся в олигоцене.

Олигоценовые осадки в западной части гор Маркус-Неккер представлены реликтовыми накоплениями верхней части яруса: фораминиферово-наннофоссилиевыми разностями с относительно низкими содержаниями Fe, Mn и тяжелых металлов, сохранившимися после одного из крупнейших (в постюрской истории Тихого океана) перерывов. В южном районе возвышенности Хесса олигоценовые отложения уничтожены эрозией; однако в северной ее части (скв. 464) осадки олигоцена в ходят в состав вулканогенной серии относительно глубоководных бурых глин, пользующихся локальным распространением. Крупнейший перерыв в осадконакоплении (эоцен – средний – поздний миоцен) связан с кардинальными изменениями климата и перестройкой системы океанских течений на границе эоцена и олигоцена и в раннем – среднем миоцене [Frakes, Kemp, 1972, 1973; Berggren, Hollister, 1977; Andel, 1974; и др.]. В это время происходили периодические вторжения в центральную часть Тихого океана придонной антарктической воды, холодной, с высокой плотностью и соленостью, агрессивной по отношению к карбонатам и силикатам.

В позднем миоцене-плейстоцене накапливались фораминиферовонаннофоссилиевые осадки, нередко с повышенным содержанием остатков радиолярий, диатомовых. Седиментация характеризовалась низкими скоростями, характерными для северной олиготрофной зоны Тихого океана. В плиоцене и плейстоцене наблюдаются относительно повышенные содержания Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и других компонентов и соответственно несколько увеличенные скорости их аккумуляции (см. рис. 35-44), что связано с региональной активизацией островного базальтового вулканизма.

\* \* \*

Таким образом, исследование распространения главных компонентов и тяжелых металлов в отложениях мезозоя и кайнозоя районов гор Маркус-Неккер и возвышенности Хесса, а также парагенетических ассоциаций этих составляющих как форм их нахождения, позволяет выделить три главных этапа геохимической эволюции постюрской седиментации центральной области северо-западной части Тихого океана: 1) раннемеловой, 2) позднемеловой, 3) кайнозойский:

Раннемеловой этап характеризуется различной геохронологической продолжительностью для каждого из исследованных районов: а) в западной части гор Маркус-Неккер (скв. 463): поздний баррем—поздний альб; б) в северной части возвышенности Хесса (скв. 464): ранний альб—ранний сеноман; в) в южной части возвышенности Хесса (скв. 465, 465А, 466): поздний альб—ранний сеноман.

В это время накапливались относительно мелководные карбонатные осадки, обогащенные основным вулканокластическим материалом. Отмечаются высокие количества SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и связанных с ними тяжелых металлов, присутствующих главным образом в составе основной вулканокластики и смектит-иллитовых, гидроокисных продуктов ее изменения, в меньшей мере — в составе соединений, поставляемых гидротермами и эксгаляциями.

Для начальных стадий этапа примечательна максимальная вулканическая активность (скв. 463 — средняя часть раннего апта; скв. 464 — ранний—средний альб; скв.465, 465А, 466 — поздний альб), проявлявшаяся в обстановке ограниченных, стагнированных бассейнов, в которых накапливались туфогенные карбонатные осадки с относительно высоким содержанием сапропелевого материала и растительного детрита. Высокие скорости седиментации и аккумуляции главных компонентов, а также тяжелых металлов близки к подобным показателям протоокеанских стадий развития рифтогенных бассейнов.

Позднемеловой этап характеризуется переходным режимом седиментации и соответствующими геохимическими параметрами: отмечается существенное уменьшение (по сравнению с ранним мелом) содержаний главных компонентов и тяжелых металлов, скоростей их аккумуляции. Накопление фораминиферово-наннофоссилиевых осадков происходило в пелагической обстановке открытого океана. Для района гор Маркус-Неккер важнейшей особенностью этапа являются высокие скорости накопления CaCO<sub>3</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe, Mn и P в маастрихте. В это время данный участок океанского дна пересекал экваториальную зону высокой биологической продуктивности при направленном к северу движении Тихоокеанской плиты.

Кайнозойский этап характеризуется накоплением пелагических фораминиферово-наннофоссилиевых осадков с типичными для открытого океана низкими концентрациями Fe, Mn и тяжелых металлов. Этап отличается многочисленными перерывами. Во многих случаях базальные осадки на границах перерывов обогащены остаточными продуктами, сохранившимися от растворения: глинистыми минералами, гидроокислами Fe и Mn, фосфатами. В плиоцене--плейстоцене отмечается резкое усиление островного вулканизма, отразившееся в возрастании содержаний Fe, Mn и тяжелых металлов.

# ЛИТОЛОГИЯ, МИНЕРАЛОГИЯ ОСАДОЧНОГО ЧЕХЛА И ГЕОХИМИЯ БАЗАЛЬТОВ КАЛИФОРНИЙСКОГО ЗАЛИВА (РЕЙС 65-й)

### ЛИТОЛОГИЯ И МИНЕРАЛОГИЯ ПЛЕЙСТОЦЕНОВЫХ ОТЛОЖЕНИЙ УСТЬЯ КАЛИФОРНИЙСКОГО ЗАЛИВА

Во время 65-го рейса "Гломара Челленджера" были пробурены скважины на четырех участках в устье Калифорнийского залива (рис. 45). Буровые работы проводились здесь с целью детального изучения как молодых базальтовых тел (покровных и субинтрузивных), так и перемежающихся с ними и перекрывающих их осадочных отложений океана. На участке, где расположена скв. 483, бурением вскрыты породы, возраст которых датируется плиоценом, плейстоценом и голоценом [Initial reports..., 1983]. На остальных же рассматриваемых участках разрезы начинаются плейстоценом и венчаются голоценом. По литологическим признакам вся пройденная бурением толща легко расчленяется на три макрофации.

Макрофация III, нижнеплиоценовая (скв. 483, интервал глубин 166—270 м), состоит в основном из чередования массивных базальтов и пиллоу-базальтов; небольшую роль играют тонкие прослои осадочных (глинистых) пород.

Макрофация II, плейстоценовая (максимальная мощность ее 181 м — по скв. 485А, в интервале глубин 150—331 м), характеризуется частым переслаиванием массивных базальтов с глинистыми и алеврито-глинистыми породами.

Макрофация I, плейстоцен-голоценовая (максимальная мощность около 150 м), сложена исключительно осадочными отложениями океана; в основном это глинистые и алеврито-глинистые илы, реже — глинистые диатомиты. В качестве единичных тонких прослоев встречаются песчанистые алевриты и мелкозернистые пески.

В нашем распоряжении главным образом был керновый материал из отложений макрофации I, и лишь по скв. 485А имелось несколько образцов осадочных пород макрофации II.

### ОБЩАЯ ХАРАКТЕРИСТИКА ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ В РАЗРЕЗАХ

Провести послойное сопоставление разрезов осадочной толщи на рассматриваемых участках океана не представляется возможным, так как эти участки относятся к разным элементам тектонической структуры региона и осадконакопление развивалось в них не всегда синхронно. Однако основная направленность процессов седиментации и главные особенности формировавшихся тогда осадков были всюду сходными, поэтому для устьевой части Калифорнийского залива можно составить единую характеристику четвертичных отложений.

На всех четырех участках разрезы осадочной толщи, вскрытые бурением, сложены в основном глинами, алевритистыми глинами и глинистыми алевритами. Подчиненную по мощности роль играют песчанистые алевриты и мелкозернистые пески (всюду сильноглинистые). Породы обладают темно-серой и зеленовато-серой окраской. Характер слоистости в малых кусках керна уловить трудно, и только в шлифах под микроскопом бывают заметны следы тонкой горизонтальной слоистости. Однако в большинстве случаев эта первичная текстура осадков оказывается сильно нарушенной процессами биотурбации. Породы легко размокают в воде.


Рис. 45. Литологические колонки скважин 65-го рейса

1 — диатомовые алевритовые глины; 2 — пески; 3 — алевриты глинистые и глины алевритистые; 4 — глины; 5 — базальт; 6 — пиллоу-лавы

Алевритовый и более крупнозернистый материал представлен зернами кварца, полевых шлатов, глауконита, пластинками слюд, хлорита, агрегатами монтмориллонита. В тяжелой фракции, количество которой составляет доли процента от частиц размером 0,01—0,1 мм, присутствуют (помимо рудных зерен) циркон, эпидот, цоизит, роговая обманка (обыкновенная, реже — боркевикит), рутил, гранат, турмалин, титанистые минералы. Весь этот обломочный материал является терригенным, многократно переотложенным. Кроме того, эпизодически к нему примешивались пирокластические частицы свежего биотита, осколки вулканических стекол (кислых, реже — основных), иногда — обломки кристаллов моноклинного пироксена, роговой обманки, кварца, плагиоклазов.

Основная пелитоморфная масса всех описываемых пород очень однообразна. Она окрашена коллоидальным сапропелевым веществом в бежевато-оливковатый, иногда буроватый цвет и включает то в большем, то в меньшем количестве гелифицированные фрагменты в форме бесструктурного витрена, иногда ксиловитрена, сгустки гелинито-коллинита различных размеров, а также остатки кремневых и карбонатных организмов. Среди биогенного кремнезема наиболее часты панцири диатомей и их обломки, реже встречаются скелеты радиолярий, спикулы губок. В массе диатомового детрита различаются осколки панцирей этмодискусов. Органогенный карбонат принадлежит главным образом раковинам фораминифер, реже — кокколитам, очень редко (в алеврито-песчаных прослоях) находятся единичные обломки раковин моллюсков и створки остракод. Раковины фораминифер часто бывают плохой сохранности: раздавпены, полурастворены и т.д.

Основная часть глинистого вещества изученных отложений является детритным материалом, который вносился в осадок в виде взвеси и пресипитация которого шла механическим путем из мутных наддонных вод. Это были частицы монтмориллонита, гидрослюд, хлорита, а иногда и каолинита. Кроме того, в осадок поступало какое-то количество глинистого материала и в коллоидальном состоянии, в комплексе с колломорфным гумусовым веществом. При коагуляции либо выпадал сложный, органо-минеральный гидрогель, либо происходила раздельная садка органической и глинистой массы. В последнем случае обособлялись бесформенные, с расплывчатыми очертаниями бледнозеленые сгустки тонкодисперсного смешаннослойного монтмориллонитового минерала. Интересно отметить, что процесс "очищения" метаколлоидального глинистого вещества от органического мог происходить и в результате жизнедеятельности илоедов. Последние, пропуская через себя иловые воды, богатые органо-минеральными коллоидами, усваивали их органическую часть, а минеральную удаляли в виде копролитов. В ископаемое состояние эти копролиты переходили редко, так как еще в свежем илу они подвергались процессам биотурбации. Тем не менее глинистые копролиты иногда хорошо сохраняются в осадках.

В некоторых песчаных и алевритовых прослоях среди обломочного материала присутствуют явно переотложенные терригенные ярко-зеленые глауконитоподобные зернистые агрегаты. Судя по рентгенограммам, эти агрегаты относятся к смешаннослойной фазе монтмориллонитового ряда, в которой имеется до 20% неразбухающих иллитовых слоев. Интересно отметить, что подобный же минерал отмечается как главный компонент и в составе глинистого материала многих песчаных и песчано-алевритовых прослоев. Возможно, что при переотложении и переносе часть глауконитоподобных агрегатов могла измельчаться и тем самым обогащать соответствующим минералом пелитовую фракцию осадков.

Для рассматриваемых пород очень обычен аутигенный пирит. Он дает псевдоморфозы по гумусовым растительным остаткам (и изредка замещает остатки диатомей, заполняет камеры фораминифер), образует бесформенные агрегаты, вытянутые по слоистости осадка. Особенно много бывает аутигенного пирита вблизи контакта осадков с базальтом. Замечена следующая закономерность. Почти во всех осадках макрофации I пирит связан с ожелезнением растительных остатков и представлен землистой разностью — мельниковитом. В нижней части разреза макрофации I, в осадках, близких к контакту с базальтом, а главное в осадках, перемежающихся с базальтами, пирит образует агрегаты хорошо образованных кристаллов с характерным металлическим блеском. Обращают на себя внимание псевдоморфозы пирита по растительным остаткам, имеющие цилиндрическую форму. Они сложены тонкоагрегатным пиритом, а поверхность их усеяна хорошо развитыми кристаллами пирита. Очевидно, здесь имеются две генерации пирита: одна связана с ожелезнением растительных остатков на раннем этапе диагенеза, а другая — с привносом железа гидротермами в более позднюю стадию изменения осадка.

В плейстоценовых отложениях изученного региона присутствует образовавшийся in situ, далеко не типичный для нормальноокеанических осадков аутигенный минерал гипс. Особенно он характерен для осадков скв. 482 и 485. Здесь почти в каждом шлифе можно встретить несколько крупных кристаллов или лучистых агрегатов гипса. Существует следующая закономерность. В нижней части разреза, примерно с глубины 127 м (скв. 485А) или 101 м (скв. 482В), гипс образует крупные (>0,5 мм) лучистые агрегаты. Выше и до самого верха разрезов он представлен хорошо образованными моноклинными кристаллами (длиной до 0,3 мм), которые в шлифе имеют веретенообразные или боченковидные очертания. Кристаллы прозрачные, чистые, иногда (обычно только по своей периферии) — мутные, имеют пойкилитовую структуру. В разрезах по скв. 483 и 484 аутигенный гипс, как правило, фиксируется реже и обычно в виде мелких розетковидных агрегатов, и только в разрезе по скв. 483 ниже глубины 81,5 м присутствуют крупные радиальнолучистые агрегаты гипса.

Частая встречаемость крупных и не единичных кристаллов гипса позволяет считать его типичным аутигенным минералом для плейстоценовой толщи некоторых участков устья Калифорнийского залива. Образование столь необычного для океанических осадков аутигенного минерала, вероятно, было связано с гидротермальными процессами, которые действовали тогда в океанической коре. В частности, только систематическое поступление дополнительного тепла в свежие осадки могло усиливать испарение иловых вод и тем обеспечивать выпадение солей из раствора. Кстати, в скв. 482С и в настоящее время констатируются относительно высокие температуры (≈ 150°C), которые также объясняются деятельностью гидротерм.

### ЛИТОЛОГО-ФАЦИАЛЬНАЯ ХАРАКТЕРИСТИКА РАЗРЕЗОВ

# Скважины 483, 483В, 483С

Эта группа скважин была пробурена примерно в 52 км западнее Восточно-Тихоокеанского поднятия и в 25 км западнее основания континентального склона Калифорнийского залива на глубине 3070 м. Разрез по скв. 483 стал опорным для этого участка акватории. Разрезы по скв. 483В и 483С получились очень неполными, так как при бурении большая часть керна из надбазальтовой части толщи была размыта. Разрез по скв. 483В повторяет опорный разрез начиная с глубин 91,5 м, а с глубины 204,5 м удлиняет его (до 267 м). Разрез по скв. 483С повторяет основной разрез в интервалах 38,5-48 и 86-114 м.

Сводный разрез имеет мощность 267 м и расчленяется на три макрофации. По данным бортового описания, в этом разрезе от забоя и до глубины 150 м залегают базальты (массивные и пиллоу-базальты); выше (115—150 м) разрез представлен чередованием массивных базальтов и осадочных (глинистых) пород; с глубины 115 м и выше до устья скважины идет осадочная толща пород (макрофация I), которая и послужила объектом наших исследований.

Макрофация і (скв. 483, кері д 1—13; глубины 0—115 м) объединяет три фации. Фация Із (керны 11—13; 86,5—115 м) представлена темно-серыми глинами. слабоалевритистыми (~ 10-12% фракции 0,01-0,1 мм), с редкими тонкими более алевритистыми прослоями (до 30% фракции 0,01-0,1 мм). Для них характерно повышенное (до 2,6%) содержание органического вещества смешанного типа с преобладанием гумусового материала, представленного бурыми сгустками и агрегатами сгустков Гелинито-коллинита, которые имеют зернистую структуру и расплывшиеся контуры. Среди гумусового материала в значительном количестве обнаруживаются обломки витринита как аллотигенного, так и сингенного происхождения [Timofeev, Bogoliubova, 1979; Боголюбова и др., 1979], а также преимущественно гелифицированные частички крупного и мелкого аттринита. Сапропелевый материал представлен сапроколлинитом, сорбированным минеральной частью осадка. Он имеет бежевато-оливковатый цвет, на участках с примесью гумусового материала обретает буроватый тон. Много пирита; псевдоморфозы по растительным обрывкам, шарообразные зерна, сплошные, неправильной формы агрегаты. Местами в глинистой массе улавливаются следы первичной тонкой горизонтальной слоистости осадка, подчеркнутой ориентированным расположением глинистых чешуек. В большинстве же случаев она не сохраняется из-за интенсивной биотурбации осадков. Карбонатность пород низкая (10—12%). Она обусловлена главным образом присутствием раковин фораминифер плохой сохранности, с тонкими стенками. Редко бывают заметны единичные кокколиты. Алевритовые частицы принадлежат кварцу, полевым шпатам, слюдам, хлориту, агрегатам минералов монтмориллонитовой группы; среди тяжелых минералов преобладает пирит, имеются зерна роговой обманки, эпидота и цоизита, циркона, граната, сфена, а местами — единичные зерна моноклинного пироксена. Очень редко встречаются мелкие осколки кислых вулканических стекол. Наряду с пиритом иногда отмечаются и зерна пирротина. В осадках этой фации встречается аутигенный гипс в виде крупных (~ 0,30-0,50 мм) лучистых агрегатов.

Фация I<sub>2</sub> (керны 7—10; 48,5—86,5 м) представлена зеленовато-серыми алевритистыми глинами (~20—30% фракции 0,01—0,1 мм) с редкими прослоями песчанистых алевролитов. Кое-где (керн 7, секция 5 и др.) наблюдается заметная примесь пепловых частиц: осколки вулканических стекол, пластинки свежего биотита, обломки кристаллов пироксена, кварца, плагиоклазов. Снизу вверх по разрезу постепенно увеличивается примесь биогенного кремнезема, главным образом за счет остатков диатомей, реже — радиолярий и спикул. Много аутигенного пирита. Органическое вещество в осад-

ках этой фации содержится в меньшем количестве (1,2—1,8%), чем в нижележащей. Оно относится к сапропелевому типу и представлено сапро-коллинитом бежевато-<sub>оливковатого цвета. Сапро-коллинит сорбирован минеральной составляющей осадка.</sub> Гумусовый материал обнаруживается в виде редких обломков витринита фрагментарной размерности и небольшого количества гелефицированного аттринита. Карбонатность пород — 20—25%; она обусловлена в основном раковинами фораминифер (плохой сохранности), но встречаются прослои, где помимо фораминифер есть участки пелитоморфного карбоната с реликтами кокколитов. В отдельных алевритовых прослоях встречаются мелкие известковистые конкреции. Осадки сильно биотурбированы. В них (керны 7—8) особенно отчетливо бывают заметны следы жизнедеятельности илоедов. Там, где особенно много сохранилось копролитов, глинистая масса осадков содержит значительное количество смешаннослойного монтмориллонитового минерала. Терригенный обломочный материал осадков (в том числе и тяжелая фракция) фаций I<sub>2</sub> и I<sub>3</sub> вполне идентичен. В осадках фации I<sub>2</sub> изредка встречается аутигенный гипс, но не в виде лучистых крупных агрегатов (как в фации  $I_3$ ), а в виде мелких агрегатных зерен с пойкилитовой структурой.

Фация I<sub>1</sub> (керны 1-6; 1-48,5 м) представлена осадками, в результате постепенного перехода сманяющими осадки фации I<sub>2</sub>. Это зеленовато-серые диатомовые алевритовые глины и глинистые диатомиты (керны 1-2). Изредка встречаются прослои глин, сильно обогащенные песчано-алевритовым материалом (отдаленные турбидиты). Среди диатомового детрита различаются и осколки панцирей этмодискусов. В глинах содержится повышенное количество органического вещества (1,7-2,6%), которое относится к сапропелевому типу, состоящему из сапро-коллинита и небольшого количества гумусового материала. Сапро-коллинит сорбируется минеральной составляющей осадка и имеет бежевато-оливковатый цвет. Среди гумусового материала преобладают сгустки и агрегаты сгустков гелинито-коллинита зернистой структуры бурого цвета, с расплывчатыми контурами. В меньшем количестве обнаруживаются фрагменты витринита и гелефицированный аттринит. В некоторых прослоях присутствует небольшая примесь пепловых частиц: осколков кислых вулканических стекол, пластинок свежего биотита; обычен аутигенный пирит. Изредка встречаются мелкие агрегаты гипса.

### Скважины 484, 484А

Эти скважины были пробурены на участке океана, расположенном над так называемым "магнитным диапиром".

Скважина 484А принята в качестве опорной. Ее общая глубина 62 м; нижние 7 м разреза составляют базальты (макрофация II), а остальные 55 м — осадочные породы, объединенные в макрофацию I.

Макрофация I (керны 1-6; глубины 0-55 м) в нижней части (мощность 9 м) сложена алевритовыми глинами с раковинами фораминифер, остатками наннопланктона. Вверх по разрезу глины обогащаются биогенным кремнеземом. Среди алевритовых частиц присутствуют кварц, полевые шпаты, монтмориллонитовые агрегаты, пластинки слюд. Основная по мощности часть разреза представлена диатомовыми глинами и глинистыми диатомитами. В них рассеяны раковины фораминифер, единичные кокколиты и очень редко — створки остракод. Всюду присутствуют обломки витринита различных размеров, пятна гелинито-коллинита среди сапропелевого колломорфного вещества. Обнаруживается аутигенный пирит. Местами заметна примесь пепловых частиц: биотита, кислых вулканических стекол, роговой обманки, пироксена. Редкие мелкие агрегатные зерна гипса (обычно пойкилитовой структуры) были встречены лишь в осадках из кернов 1 (секция 3) и 6 (секция 2).

# Скважины 482А, 482В

Примерно в 12 км от оси Восточно-Тихоокеанского поднятия и в 15 км южнее разломной зоны Тотайо было пробурено несколько скважин; по скв. 482А и 482В составлен опорный разрез общей мощностью 230 м, легко расчленяющийся на две макрофации.

Макрофация II (скв. 482В, керны 11-24; глубины 137-230 м) включает серию базальтовых тел, содержащих прослои глинистых пород. Образцов осадочных пород из этого интервала разреза у нас не имелось.

Макрофация I (скв. 482А, керны 1–4; скв. 482В, керны 1–10; глубины 0–137 м) может быть расчленена на три фации, но границы между ними точно не устанавливаются, так как осадки связаны между собой постепенными переходами.

Фация Із (скв. 4828, керны 7—10) представлена темно-серыми глинами с высоким содержанием органического вещества (около 2,5%), которое относится к сапропелево-гумусовому типу с резким преобладанием гумусового материала. Последний представлен то в большем, то в меньшем количестве гелинито-коллинитом с зернистой и хлопьевидной структурой, образующим бурые спустки различных размеров. частично находящимся в смеси с сапро-коллинитом. Среди гумусового материала довольно много крупных обломков витринита буровато-оранжевого цвета преимущественно сингенетичного происхождения. В небольшом количестве присутствует гелифицированный аттринит. Сапропелевый материал относится к сапро-коллиниту и имеет бежевато-оливковатый цвет. Он тесно соединен с минеральной составляющей осадка. Местами наблюдаются остатки наннопланктона и раковины фораминифер. В одних раковинах фораминифер камеры заполнены пиритом, в других - пирит развивается только по стенкам камер, тогда как центральная часть их выполнена кальцитом, иногда в виде монокристаллов. Характерно, что здесь совсем не встречаются остатки кремневых организмов. Обычны радиально-лучистые крупные агрегаты аутигенного гипса.

Фация 12 (скв. 482А, керны 4-5; скв. 482В, керны 1-6) представлена зеленовато-серыми алевритистыми глинами (до 25% фракции 0,01-0,1 мм) с прослоями, обогащенными мелкопесчаным материалом. В отличие от нижней фации (I<sub>3</sub>) здесь породы содержат меньше органического вещества, поэтому (часто — в большом количестве) сохраняются кокколиты. Вверх по разрезу постепенно увеличивается примесь биогенного кремнезема. Аутигенный гипс характерен и для пород фации I<sub>2</sub>, но в них он присутствует в виде хорошо образованных монокристаллов. В рассматриваемом разрезе было встречено два песчаных прослоя, в которых среди алевритового и песчаного материалов оказалось много переотложенных зерен глауконита (обр. 4828-6-5-97-101 и 482А—5—5—69—70). Они имеют зеленый цвет, точечно поляризуют и отличаются плавными контурами; радиальные трещинки заполнены бледно-зеленой глинистой массой. Глауконитовые зерна вместе с другими песчаными и алевритовыми частицами (кварца, полевых шпатов, роговой обманки, пироксена и основной массы базальтов) погружены в известково-глинистую массу с пятнами колломорфного органического вещества и обломками витринита различных размеров; встречаются обломки крупных раковин моллюсков и створок остракод. Иными словами, весь осадок, в который включены зерна глауконита, генетически связан с турбидитным потоком. Мы специально изучили эти глауконитовые зерна рентгенографически, и выяснилось, что они имеют смешаннослойный монтмориллонит-гидрослюдистый состав. Более подробная характеристика минерала дана ниже.

Фация I<sub>1</sub> (скв. 482А, керны 1–4) представлена зеленовато-серыми алевритовыми глинами, пропитанными бурым органическим веществом, с остатками редко рассеянного наннопланктона и раковин фораминифер, а также с аутигенным пиритом. Кое-где встречаются пепловые частицы. Постоянно присутствуют, хотя и в небольшом количестве, остатки кремневых организмов. Довольно обычен гипс, который образует включения крупных монокристаллов.

### Скважины 485, 485А

Скважины 485 и 485А расположены несколько восточнее скв. 482 (см. рис. 45). По ним составлен общий разрез. Глубина заложения скважин 2981 м. Скважина 485А прошла 331 м, т.е. оказалась наиболее глубокой по сравнению с остальными скважинами 65-го рейса.

Разрез по скв. 485 и 485А расчленяется на две макрофации. Нижняя макрофация (II) характеризуется частым чередованием базальтов и осадочных пород, а верхняя (I) представлена только осадочными породами. Интересно заметить, что здесь, на самом юго-восточном участке района работ, суммарная мощность плейстоценовой серии пород (макрофаций I и II) выше, чем на других участках бурения этого рейса. Судя по бортовым описаниям, в рассматриваемом разрезе и мощности осадочных пород, чередующихся с базальтами (макрофация II), выше, чем в других разрезах. Макрофация II (скв. 485А, керн 11, секция 3 — керн 39; глубины 152—331 м) была изучена нами только по семи образцам (керны: 19—22, 27, 36, 37), по которым трудно было составить полное представление об осадочных породах, чередующихся с базальтами, но все же оказалось возможным уловить некоторые отличия этих пород от надбазальтовой серии (макрофация I).

Создается впечатление, что осадки, объединенные в макрофацию II, накапливались примерно на тех же глубинах, что и осадки макрофации I, и состояли в основном из терригенного Материала, преимущественно детритно-глинистого, с примесью алевритовых частиц. Изредка в осадки вносился турбидитными потоками и мелкопесчаный материал. Осадки достаточно обогащены органическим веществом, на долю которого приходится нередко более 2,5%. Органическое вещество смешанного состава, с преобладанием гумусового материала; последний состоит из буроватого гелинито-коллинита, который имеет вид сгустков среди сапро-коллинита или тонко диспергирован в нем. образуя сапро-гелинито-коллинит буровато-оливковатого цвета. Имеется довольно много крупных обломков витринита, часто с полуокатанными контурами, размер которых иногда бывает больше поля зрения микроскопа. Присутствующий аттринит представлен частичками витринита; сапропелевый материал обнаруживается в небольшом количестве в виде бежевато-оливковатого сапро-коллинита, сорбированного минеральной составляющей осадка. Среди алеврито-песчаного материала описываемых осадков, помимо зерен кварца, полевых шпатов, пластинок слюд, хлорита, присутствуют обломки базальтов. В тяжелой фракции этих осадков доминируют аутигенные частицы (пирит и барит), а терригенные (циркон и эпидот) — единичны. Пелитоморфный компонент осадков представлен полиминеральным детритным глинистым веществом.

Осадочные породы, перемежающиеся с базальтами, отличаются от пород надбазальтовой серии несколько большим уплотнением, более сильной пиритизацией. Мельниковит в них не обнаруживается, а всюду констатируется только пирит. Интересно, что многие агрегатные зерна пирита имеют сложное строение: плотное, тонкокристаллическое ядро инкрустировано хорошо образованными кристаллами (пирит двух генераций?).

Отложения макрофации II в целом состоят так же, как и в других разрезах, из глинистых и алевритовых отложений, но здесь чаще встречаются песчано-алевритовые прослои мощностью до 3 м, и алевритовые породы обнаруживают явное превосходство над глинистыми. Остатки кремневых организмов в осадках этого разреза, как правило или совсем отсутствуют, или очень немногочисленны. Наблюдаются крупные обломки витринита, нередко хорошо окатанные. Карбонатность пород невелика (~ 11%); она обусловлена главным образом присутствием раковин фораминифер (обычно очень тонкостенных) и сохранением кое-где кокколитов; в отдельных слоях (скв. 485А, керны 6–8) заметная роль принадлежит тонкозернистому хемогенному (диагенетическому) карбонату. По всему разрезу встречаются пепловые частицы: обломки кислых вулканических стекол, пластинки свежего биотита, зерна амфибола и пироксена.

Макрофация I (скв. 485, керны 1-6; скв. 485А, керны 1-11, секция 3; глубины 0-152 м) не поддается расчленению на фации с четкими границами разделов (настолько постепенны все переходы между слоями) и может быть расчленена только очень условно.

Фация I<sub>3</sub> (скв. 485А, керн 9 — керн 11, секция 3) представлена алевритовыми глинами, которые особенно часто включают линзовидные песчано-алевритовые прослои. Среди алевритового и песчаного материалов — зерна кварца, полевых шпатов, пластинки слюд (сильно хлоритизированный биотит), глинистые агрегаты, зерна глауконита, изредка — обломки базальта. В тяжелой фракции (составляет доли процента от фракции (0,01—0,1 мм): пирит, эпидот, цоизит, роговая обманка, циркон. В глинистой фракции осадков, обогащенных алевритовыми и песчаными частицами, часто главенствующая роль принадлежит смешаннослойной монтмориллонит-гидрослюдистой фазе. Аутигенный гипс в породах этой фации присутствует во всех литологических разностях пород в виде крупных радиальнолучистых агрегатов. Органическое вещество составляет 1,3—1,6% осадка. Оно относится к смешанному типу с преобладанием гумусового материала, представленного гелинито-коллинитом, который обнаруживается в виде бурых пятен и сгустков, а также обломками витринита и аттри-

нитом. Сапропелевый материал встречен в форме сапро-коллинита, иногда в смеси с гелинито-коллинитом.

Фация I2 (скв. 485А, керны 5-8) объединяет глинистые и алеврито-глинистые породы с очень редкими и маломошными песчано-алевритовыми прослоями. Осадки характеризуются меньшим содержанием органического вещества по сравнению с нижележащими (0,5—1,3%). Оно — также смешанного состава с преобладанием гумусового материала в форме гелинито-коллинита. Гелефицированный аттринит и обломки витринита встречаются в сравнительно небольшом количестве, но вверх по разрезу содержание их увеличивается, и одновременно появляются более крупные включения витринита. Сапропелевый материал, как обычно, в этой части разреза представлен буровато-оливковатым сапро-коллинитом. В некоторых глинах бывают заметны следы внутрислойного скольжения (оползневого характера?). В нижней части фации (керны 5-7) глинистая масса испещрена тонкозернистым кальцитом, среди которого сохраняются единичные кокколиты. Очевидно, этот карбонат — результат растворения биогенного СаСО3 и химической садки кальцита в процессе диагенеза. Всюду — тонкостенные раковины фораминифер. Изредка встречаются остатки кремневых организмов (диатомей, радиолярий и др.). Аутигенный гипс дает крупные, хорошо развитые кристаллы.

Фация I, (скв. 485, керны 1-6; скв. 485А, керны 1-4) в основном представлена глинами и алевритистыми глинами. В верхней части разреза встречаются песчано-алевритовые прослои. Для осадков фации 1, характерно постоянное присутствие (хотя и в малом количестве) остатков диатомей и других кремневых организмов. Обнаруживаются рассеянные пепловые частицы. Часто встречается аутигенный гипс в виде крупных монокристаллов. Органическое вещество составляет более 3%. Оно состоит из гумусового и сапропелевого материала. Гумусовый материал представлен то более, то менее крупными сгустками гелинито-коллинита зернистой структуры, а также аттринитом, частички которого принадлежат витрену. Отдельные гелефицированные фрагменты имеют ксиловитреновую структуру, реже относятся к витрену. Наблюдаются случаи распада тканей на отдельные зерна, свидетельствующие о микробиальном разложении растительного материала, поступающего с континента, и о формировании части зернистого гелинито-коллинита in situ. Сапропелевый материал представлен бежеватооливковатым сапро-коллинитом. Иногда он находится в смеси с гелинито-коллинитом, обретая при этом буроватый оттенок. Соотношение гумусового и сапропелевого материала по разрезу меняется. В результате в нижней половине разреза, представленного данной фацией, органическое вещество принадлежит в целом к существенно гумусовому типу, а в верхней - к сапропелевому.

## МИНЕРАЛОГИЧЕСКИЕ ТИПЫ ГЛИНИСТОЙ ФРАКЦИИ ЧЕТВЕРТИЧНЫХ ОСАДКОВ

Глинистая фракция < 0,001 мм была детально изучена рентгенографически (в 56 образцах) преимущественно для детритных отложений четвертичного возраста. При этом были выявлены три минералогических типа глинистой фракции:

 полиминеральный, типично детритный переотложенный комплекс минералов: монтмориллонита, иллита и хлорита (наиболее характерный для илов надбазальтовой толщи);

 глинистая фракция с преобладанием аутигенного смешаннослойного, сильно набухающего монтмориллонит-иллитового, глауконитоподобного минерала (характерного для биотурбированных глинистых аргиллитов, обогащенных органическим веществом);

3) глинистая фракция с преобладанием смешаннослойного монтмориллонит-иллитового железистого глауконитового минерала (более характерного для отдаленных турбидитов с переотложенным глауконитом).

Породы чисто биогенного происхождения, такие, как диатомиты, фораминиферовые илы или нанноилы, не образуют здесь самостоятельных прослоев (без участия терригенного материала), а потому и не были охарактеризованы в отношении минералов глинистой фракции. Полиминеральный, типично детритный комплекс минералов: монтмориллонита, иллита и хлорита (наиболее характерный для илов надбазальтовой толщи). Верхняя надбазальтовая толща терригенных отложений четвертичного возраста имеет мощность 150 м (скв. 485А). Она весьма однообразна в отношении как литолого-фациальных типов, так и минерального состава глинистой фракции. В пределах надбазальтового чехла породы типа глин и алевритистых глин (с малой примесью биогенных компонентов — диатомовых или остатков наннопланктона) имеют исключительно однообразный комплекс глинистых минералов. Он слагается преимущественно переотложенными детритными минералами: монтмориллонитом, иллитом, с малой примесью хлорита или каолинита. Рентгенографические параметры этих минералов не отличаются от стандартных [Grim, 1953; X-ray identification..., 1951; The X-ray identification..., 1961].

Количественные оценки содержания глинистых минералов во фракции < 0,001 мм, выполненные по методу П. Бискайе [Biscaye, 1964], показывают очень небольшие вариации в их распределении по разрезам скважин и профилю.

Монтмориллонит всюду является преобладающим компонентом глинистой фракции, но несколько более обилен в западной части профиля [Initial reports..., 1981], где в скв. 483 его содержание варьирует в пределах 50—80%, а в скв. 483С — 60—70%. В юго-восточной части профиля в скв. 482 его содержание доходит примерно до 65%, а в скв. 485 составляет 40—70%. В скв. 484, расположенной к северо-востоку от срединного хребта, содержание монтмориллонита — 60%.

Иллит является по количеству вторым существенным компонентом глинистой фракции. Его несколько меньше в западной части профиля (в скв. 483 — 15—40%) и заметно больше в восточной части (в скв. 482А — 35—55%, а в скв. 485 — 15—35%). В скв. 484 он составляет 15—30% глинистой фракции.

Хлорит вместе с примесью каолинита составляет 5—15% глинистой фракции. Лишь в скв. 484 примесь этих двух минералов достигает примерно 20%.

Приведенные здесь оценки количества глинистых минералов близки к соответствующим данным процентного содержания глинистых минералов, полученным для надбазальтовой терригенной толщи В.Б. Курносовым с соавторами [Kurnosov et al., 1983]. В.Б. Курносов приводит несколько более высокие содержания набухающих 17Å-ных минералов (на 5–10%). Кроме того, эти авторы не выделяют в число 7Å-ных минералов каолинит, который фиксируется нами.

Комплекс глинистых минералов надбазальтовой толщи терригенных отложений часто незрелый, малоизмененный. Это хорошо видно по иллитовым, минералам, которые часто являются слабо деградированными и не обнаруживают набухающих смектитовых структурных пакетов. Аналогично иллитам мало разрушенными являются здесь и хлоритовые минералы, за исключением некоторых случаев нахождения так называемых дефектных хлоритов с частично измененным бруситовым слоем и способностью разрушаться при сравнительно невысоких температурах (~550° C).

Исключительное однообразие комплекса глинистых минералов четвертичного надбазальтового осадочного чехла как по набору минералов, так и по их количественным соотношениям объясняется рядом особенностей седиментации в данном бассейне. К их числу относятся сравнительно глубоководная обстановка осадконакопления, более выровненный подводный рельеф дна этого участка (с отсутствием явно выраженных бордерлендов), удаленность источников сноса и наземных вулканических очагов и т.п. Отложение столь однородного тонкодисперсного глинистого материала, вероятно, могло осуществляться лишь постоянными придонными течениями, возможно, с каким-то преобладающим направлением. Подобная обстановка седиментации могла существовать лишь при относительной неизменности областей сноса глинистого материала, за исключением кратковременных моментов активизации потоков, отлагавших отдаленные турбидиты в виде линзовидных маломощных прослоев, обладающих, как увидим ниже, иным составом глинистой фракции.

Толща межбазальтовых отложений, имеющая тот же состав глинистой фракции, изучена нами по ограниченному количеству образцов скв. 485А. Ассоциации глинистых минералов в глинах и алевритовых глинах, переслаивающихся с базальтами, и в надбазальтовой толще в основном одинаковы (рис. 46—48). Что касается количественных соотношений, то по нашим данным отмечается менее значительное содержание в глинистой фракции набухающих смектитовых минералов (около 50—60%), чем



Рис. 46. Дифрактограммы глинистой фракции < 0,001 мм из пород надбазальтовой сарии

I—II— полиминеральная ассоциация с монтмориллонитом, иллитом и хлоритом: I— обр. 485А— 6—3—20—22; II— обр. 485А— 9—1—117— 122; III—IV— смещаннослойные монтмориллонит-иллитовые (M-i) минералы, формирующиеся за счет переотложения глауконитсодержащих пород: III— обр. 485А— 11—3—72—76 с существенным содержанием набухающих смектитовых пакетов (до 60%); IV— обр. 482D—5—2—10—14 с малым количеством набухающих смектитовых пакетов (до 10—20%); V— тонкодисперсный аутигенный смешаннослойный (M-i), сильно набухающий минерал с малым содержанием иллитовых пакетов (15—20%)— обр. 483—7—5—72—75.

Состояние образца: а — воздушно-сухой; б — насыщенный глицерином; е — прокаленный при 550° С



Рис. 47. Дифрактограммы глинистой фракции из пород межбазальтовой серии скв. 485A 1 — обр. 27–1–113–118; 11 — обр. 36–2–80–85; 111 — обр. 37–1–108–122 полиминерального состава (включая монтмориллонит, иллит и хлорит)

по данным В.Б. Курносова (80—94%) [Kurnosow et al., 1983], и более высокий процент иллитовых минералов (30—40% вместо 10—25%). Кроме того, по рефлексам 7,15 и 3,57 Å, исчезающим после прокаливания при 550°С, мы выделяем каолинитовый компонент (около 10%) и в надбазальтовой толще.

Глинистая фракция с преобладанием аутигенного смешаннослойного, сильно набухающего монтмориллонит-иллитового глауконитоподобного минерала (характерного для биотурбированных глинистых аргиллитов, обогащенных органическим веществом). Этот минералогический тип глинистой фракции обнаружен в обр. 483-7-5-72-75. в глинистых аргиллитах, содержащих скопления органического вещества и следы жизнедеятельности илоедов. Под микроскопом обнаруживается зеленый новообразованный минерал, который замещает ходы червей при участии процессов разложения органического вещества (см. рис. 48). Рентгенографически устанавливается, что зеленый новообразованный минерал смешаннослойной монтмориллонит-иллитовой структуры отличается очень высокой дисперсностью и значительным преобладанием сильно набухающих смектитовых слоев (до 80%) над иллитовыми (до 20%). В воздушно-сухом состоянии минерал имеет d = 13,4 Å, а после насыщения глицерином обнаруживает асимметричный пик с d = 18,5 Å (указывающий как на смешаннослойный тип структуры, так и на высокую дисперсность минерала). Примесь детритного иллита, хлорита и каолинита незначительна. Малый процент пакетов железистого иллита в структуре аутигенного минерала свидетельствует о слабом начальном (инициальном) процессе глауконитизации, имевшем место в ходе диагенеза четвертичных алевритоглинистых отложений, вскрытых скважинами 65-го рейса.

Глинистая фракция с преобладанием смешаннослойного монтмориллонит-иллитового железистого глауконитового минерала (более характерного для отдаленных турбидитов с переотложенным глауконитом). На фоне однообразного полиминерального детритного глинистого материала надбазальтовой толщи гемипелагических осад-



Рис. 48. Схема распространения ассоциации глинистых минералов в разрезах скважин

1 — детритная полиминеральная ассоциация с монтмориллонитом, иллитом и хлоритом; 2 — смешаннослойная монтмориллонит-иллитовая (M-i) ассоциация (с содержанием ненабухающих иллитовых пакетов до 40%), формирующаяся за счет переотложения глауконитсодержащих песчано-глинистых отложений; 3 — аутигенная высокодисперсная, сильнонабухающая смешаннослойная (M-i) ассоциация с малым количеством иллитовых пакетов (до 15—20%); 4 — базальты; 5 — пиллоу-лавы

ков четко выделяются прослои так называемых отдаленных турбидитов, имеющих смешаннослойный монтмориллонит-иллитовый (М-і) глауконитовый состав глинистой фракции.

Тонкозернистые турбидиты имеют линзообразное залегание и представлены мелкозернистыми песчанистыми алевролитами или алевролитовыми песками с обилием детритных минералов и персотложенных фораминифер [Initial reports..., 1983]. Мелкозернистые турбидиты, содержащие обломочные зерна переотложеннсто глауконита, являются результатом перемыва осадков, ранее отложенных на шельфе и континентальном склоне в районе современной Мексики.

Под микроскопом в них обнаруживаются зерна переотложенного глауконита, который змеет смешаннослойное монтмориллонит-иллитовое строение (с катионами железа в октээдрическом слое и с калием в межслоевом пространстве). Так, в обр. 482B-6-5-27-29 из толщи алевритовых глин содержание иллитовых пакетов в смешаннослойном (M-i) железистом минерале достигает 40%, а набухающих монтмориллонитовых – 60%. Переслаивание структурных пакетов неупорядоченное. На заполнение октаэдрических позиций по железистому типу указывает рефлекс второго порядка с  $d_{020}$  = 4,53 Å. Рефлекс от воздушно-сухого образца этого минерала имеет d = 15,2 Å, а после насыщения образца глицерином приобретает значение d = 17.0 Å.





Смешаннослойный железисто-глауконитовый тип глинистой фракции в прослоях отдаленных турбидитов обнаружен в скв. 485 (обр. 3–3–36–40), 482D (обр. 5–2– 10–14), 483 (обр. 10–2–73–77) и 485А (обр. 11–2–60–75 и 11–3–72–76).

\* \* \*

Итак, можно отметить следующее.

1. Четвертичные надбазальтовые океанические отложения (макрофация I) устьевой части Калифорнийского залива состоят из темно-серых терригенных, преимущественно алеврито-глинистых и глинистых осадков, содержащих редкие линзовидные маломощные песчано-алевритовые (всегда глинистые) прослои. Сугубо полимиктовый кластогенный материал и полиминеральный состав глинистого компонента осадков характерны для всей плейстоцен-голоценовой толщи этого района. Источник сноса осадочного материала был несомненно терригенный. Присутствие среди обломочных частиц переотложенных зерен глауконита, глинистых пород, обломков раковин морской фауны указывает на то, что в состав размывавшихся пород входил осадочный комплекс и в область седиментации поступал неоднократно перемытый материал. Единообразие обломочного материала, детритного глинистого вещества и текстурноструктурных особенностей рассматриваемых осадков говорят о том, что в течение всего четвертичного периода здесь не менялся характер источников сноса терригенного материала, а гидродинамический режим области осадконакопления отличался постоянством. Это была относительно глубоководная зона океана (глубины около 3000 м) с постоянно действующими наддонными течениями, которые свободно растекались по плоскому дну. Присутствие несортированных алеврито-песчаных линз среди глинистых осадков все исследователи объясняют эпизодическими внедрениями (в область преимущественно алеврито-глинистого осадконакопления) турбидитных потоков, хотя и слабой силы. Турбидитные потоки шли с востока или юго-востока, поэтому в разрезах скв. 482 и 485 турбидиты встречаются чаще и их мощности достигают 3 м.

2. Обилие в осадках гумусового органического вещества в виде гелинито-коллинита и обломков витринита различных размеров свидетельствует о близости (к бассейну седиментации) суши с густым растительным покровом. В то же время уменьшение содержания гумусового материала в разрезах в направлении к современным осадкам в сочетании с увеличением сапропелевого материала в составе органического вещества является доказательством углубления бассейна седиментации во времени и удаления его от линии побережья.

3. Учитывая присутствие в осадках остатков таких тепловодных водорослей, как кокколитофориды, можно думать, что поверхностные воды океана были очень теплыми. Плохая сохранность биогенного карбоната (раковин фораминифер, наннопланктона) легко объяснима обилием в них активного органического вещества, которое в процессе диагенеза при своем частичном окислении выделяло CO<sub>2</sub> и тем самым обеспечивало условия высокой растворимости кальцита.

4. Аутигенный гипс в описываемых осадках несомненно был обязан своим появлением деятельности гидротерм. Возможно даже, что эта деятельность могла заключаться только в систематическом подогреве свежих осадков, из которых при этом происходило как бы выпаривание иловых вод и выпадение растворимых солей. Надо полагать, что участки расположения скв. 482 и 485 находились ближе к гидротермальным полям, чем участки, где пробурены скв. 483 и 484. Поэтому общая загипсованность осадков в первом случае выше, чем во втором. Усиленная пиритизация осадков вблизи контакта с базальтом (наличие явно двух генераций сульфида), вероятно, было связано тоже с гидротермальными процессами, но уже с привносом вещества.

5. Во время накопления надбазальтовой осадочной толщи в бассейн седиментации периодически вносился в небольшом количестве пепловый материал (главным образом осколки кислых стекол, пластинки биотита). Он, возможно, отражал вспышки эксплозивных проявлений, но в весьма далеких областях континента; скорее всего, этот наземный вулканизм был андезито-дацитового типа.

6. Глинистое вещество поступало в океаническую область аккумуляции главным образом в виде взвеси и при осаждении обусловливало полиминеральный состав пелитоморфной части осадков и тонкую горизонтальную слоистость. Последняя, кстати, в большинстве случаев сильно нарушалась процессами биотурбаций. Кроме того, какая-то часть глинистого вещества (вероятно, монтмориллонитового состава) вносилась сюда в коллоидном состоянии (вместе с гумусовым веществом) и при коагуляции из иловых вод давала аутигенные тонкодисперсные смешаннослойные монтмориллонит-иллитовые сгустки или стяжения с содержанием смектитовых слоев до 80%.

# ГЕОХИМИЯ БАЗАЛЬТОВ КАЛИФОРНИЙСКОГО ЗАЛИВА И распределение в них редкоземельных элементов

В последние годы петрологическими исследования ми вулканических пород дна океана было установлено, что существует геохимическая специализация базальтоидов, развитых в различных структурных зонах океана. Более того, стало ясно, что существуют вариации в химизме вулканитов, развитых в пределах каждой структурной зоны. Это положение справедливо и для срединно-океанических хребтов, в которых распространены главным образом слабо дифференцированные абиссальные океанические толеиты, сформированные за счет подводных трещинных излияний. Как правило, среди них преобладают афировые, в различной степени раскристаллизованные пиллоу-лавы. Реже встречаются слабопорфировые оливиновые или оливин-плагиоклазовые разности. Кроме того, в строении срединно-океанических хребтов участвуют хорошо раскристаллизованные массивные базальты, характеризующиеся как афировым, так и порфировым сложением [Hall, Robinson, 1979].

Все перечисленные породы отличаются низкими содержаниями щелочных элементов, как правило, средними концентрациями Ті и относительно высоким содержанием Mg. Для них характерна большая величина отношения Na<sub>2</sub>O/K<sub>2</sub>O, обычно достигающая 20, а иногда даже 50. Несмотря на то что породы, слагающие срединно-океанические хребты, относятся к единому петрохимическому типу (абиссальные океанические толеиты), можно отметить, что в каждом срединном хребте существует пространственная, слабо проявленная геохимическая специализация базальтов, которая заключается в вариациях содержаний Mg, Fe, Ti и щелочных элементов. По-видимому, это является следствием латеральной неоднородности верхней мантии и (или) различной степени селективного плавления.

Судя по петромагнитным характеристикам базальтов, уровни возникновения магматических очагов под срединно-океаническими хребтами, характеризующимися одинаковым глубинным строением, близки между собой. Однако в этой структурной зоне океана существуют участки с аномально утолщенной океанической корой. Например, в Срединьо-Атлантическом хребте это Азорские острова и Исландия, а в пределах Восточно-Тихоокеанского поднятия — о-в Пасхи. Вулканические породы, слагающие такие участки, сформированы не только за счет трещинных излияний, но и за счет извержений центрального типа. Они отличаются от типичных абиссальных океанических толеитов большей степенью дифференцированности (вплоть до дацитов) и иногда высокими концентрациями Fe, T и щелочных элементов. Предполагается, что очаги магмообразования под такими участками хребтов расположены глубже, чем под другими, характеризующимися стандартным глубинным строением [Золотарев, 1979].

Сопоставление химизма вулканитов Срединно-Атлантического хребта и Восточно-Тихоокеанского поднятия показало, что в целом для этих двух провинций существуют некоторые петрохимические различия, которые заключаются в том, что базальты Тихого океана по сравнению с базальтами Атлантического характеризуются несколько большей железистостью и магнезиальностью. Однако и в той, и в другой провинциях существуют довольно значительные вариации в распределении этих элементов. В тех случаях, когда резко возрастает железистость пород, в них уменьшается содержание Mg и увеличивается концентрация Ti. Эта геохимическая специфика является, по-видимому, следствием различной степени дифференцированности верхней мантии, развитой под Атлантическим и Тихим океанами. Мантийный субстрат Тихоокеанской провинции (на уровнях генерации первичных расплавов) более дифференцирован и вследствие этого более обогащен сидерофильными элементами по сравнению с субстратом атлантической провинции, для которого характерны несколько более высокие концентрации литофильных элементов.

Из концепции спрединга океанического дна следует, что срединно-океанические хребты являются теми участками океана, где формируется вся океаническая кора. В связи с этим первоочередной петрологической задачей является исследование различных участков срединно-океанических хребтов с целью накопления знаний об их строении и магматической эволюции пород, слагающих эти участки. Ниже дается детальная петрохимическая характеристика базальтов, слагающих верхнюю часть второго слоя молодой океанической коры на северном окончании Восточно-Тихоокеанского поднятия, лежащего в пределах Калифорнийского залива, и рассматривается распределение в них редкоземельных элементов. Материалом исследования послужили образцов предпочтение отдавалось разностям пород, наименее измененным вторичными процессами.

#### МЕТОДЫ ИССЛЕДОВАНИЯ

При изучении изверженных пород использовался ряд методов. Кроме петрографического изучения пород в шлифах и привлечения бортовых данных о разрезе фундамента, были сделаны химические анализы стандартным методом мокрой химии с определением содержаний главных породообразующих элементов. Все химические анализы образцов были выполнены аналитиками Г.Ф. Галковской, Н.Л. Калашниковой, Г.И. Карасевой, В.Ф. Рычковой в химико-аналитической лаборатории Геологического институра АН СССР в соответствии с методикой, принятой для этой лаборатории и ранее описанной [Zolotarev et al., 1979].

Определение содержаний редкоземельных элементов проводилось с помощью инструментального нейтронно-активационного метода анализа (ИНАА) с 20-часовым облучением проб навеской 20 мг в ядерном реакторе потоком тепловых нейтронов. Наведенная активность измерялась с помощью спектрометра на основе Ge (Li)-полупроводниковых детекторов через 7–10 (La, Sm, Yb, Lu) и 20 (Ce, Eu, Tb) дней после облучения. Подробное описание конкретных методических приемов подготовки проб, облучения. Подробное описание конкретных методических приемов подготовки проб, облучения, измерения и обработки результатов измерений было приведено ранее [Зайцев и др., 1978]. В качестве стандарта использовался базальт BR Национального геохимического центра Франции. Воспроизводимость полученных результатов характеризуется следующими стандартными отклонениями: La – 0,23; Ge – 0,87; Sm – 0,26; Eu – 0,13; Tb – 0,11; Yb – 0,45; Lu – 0,09. Контроль правильности результатов ИНАА осуществлялся путем анализа ряда отечественных стандартов и стандартов Национального геохимического центра Франции (CT-1, CTD-1A, DRN и CA). Сопоставление полученных результатов с рекомендованными значениями показало отсутствие значимого систематического расхождения для доверительной вероятности, равной 0,95.

Вариативность химического состава базальтов, поднятых из разных скважин, изучалась с использованием двухкомпонентных диаграмм: FeO-MgO,  $Al_2O_3$ -MgO,  $Al_2O_3$ -TiO<sub>2</sub>,  $Al_2O_3$ -CaO, MgO-CaO,  $K_2O$ -TiO<sub>2</sub>, а также с помощью диаграмм, построенных на основе различных петрохимических коэффициентов.

Особенности распределения редкоземельных элементов изучались с помощью вариационных диаграмм с использованием величин нормированных отношений концентраций тех или иных редкоземельных элементов в исследуемом базальте к средним концентрациям этих же элементов в силикатной фазе хондрита.

#### РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Из четырех участков, выбранных для бурения в южной части Калифорнийского залива, один расположен на западном склоне Восточно-Тихоокеанского поднятия (станция 483), два — на восточном склоне (станции 482 и 485), четвертый (станция 484) — в районе Северного трога, где была сделана попытка разбурить "магнитный диапир", установленный здесь ранее. Всего было пробурено 15 скважин, и только девять из них на различную глубину проникли в базальтовое основание. Наиболее глубоко базальты пробурены в скв. 483В, 482 и 485А.

Практически во всех скважинах вскрыты потоки массивных, в различной степени раскристаллизованных базальтов, чередующихся с потоками пиллоу-базальтов. Однако в скважинах станции 483 пиллоу-базальты в объемном отношении несколько преобладают над массивными базальтами, в то время как в скважинах станций 482 и 485 в значительной степени преобладают массивные базальты. Среди обоих типов базальтов встречаются афировые и порфировые их разновидности. В объемном отношении несколько преобладают афировые базальты. По петрографическому составу и микроструктурам базальты, поднятые на станциях 482, 483 и 485, достаточно близки между собой. Пиллоу-базальты, как правило, содержат небольшое количество микрофенокристов плагиоклаза и оливина, иногда образующих гломеропорфировые скопления. Количество микрофенокристов плагиоклаза — 1—3%, оливина — до 1%. Их размеры 0,02-0,7 мм, в редких случаях более 1 мм. Иногда оливин замещают вторичные минералы (смектит—селадонит, редко карбонат). Содержание рудного минерала 2—5%. Чаще всего он присутствует в виде рудной пыли или мелких ксеноморфных выделений. Основная масса породы представлена лейстами плагиоклаза и клинопироксеном, интерстиции между которыми заполнены вулканическим стеклом. Пористость породы 156



Рис. 49. Распределение средних содержаний (вес. %) некоторых главных породообразующих элементов по сериям



Рис. 50. Трехкомпонентная диаграмма Куно

A – Na<sub>2</sub>O + K<sub>2</sub>O; F – FeO + Fe<sub>2</sub>O<sub>3</sub>; M – MgO; I – поле толеитовой серии; II – поле высокоглиноземистой серии; III – поле щелочной оливин-базальтовой серии; IV – поле состава базальтов Калифорнийского залива

Скважины (к рис. 50-59): 1 - 4828, 2 - 482С, 3 - 482F, 4 - 482D, 5 - 483, 6 - 483С, 7 - 483В, 8 - 485А

варьирует от 1 до 5–7%. Часто поры заполнены смектитом. Иногда смектит выстилает внутреннюю поверхность пор, а их срединная часть заполнена кальцитом.

Микроструктура основной массы пиллоу-базальтов разнообразная, но чаще всего интергранулярная или интерсертальная, а в стекловатых участках — субвариолитовая, вариолитовая и гиалопилитовая.

Массивные базальты, как правило, хорошо раскристаллизованы. Среди них встречаются как афировые, так и слабопорфировые разности. Порфировые кристаллы представлены плагиоклазом (1—5%), реже — оливином (до 1%). Размеры вкрапленников

|                                |        |        |        | 4     | 82B     |        |         |               |   |
|--------------------------------|--------|--------|--------|-------|---------|--------|---------|---------------|---|
|                                | 11     | 12     | 13     |       | 14      | 4      |         | 15            |   |
| Компонент                      | 1      | 1      | 1      | ····  | 1       | 2      | 3       | 1             | Γ |
| <u> </u>                       | 7585   | 107113 | 54–61  | 1220  | 101–106 | 94–101 | 109-119 | 94–100        |   |
| SiO                            | 49,58  | 50,03  | 49,31  | 49,54 | 49,98   | 49,94  | 49,42   | 49,44         |   |
| TiO                            | 1,87   | 1,78   | 1,96   | 1,96  | 1,96    | 1,53   | 1,53    | 1,48          |   |
| Al <sub>2</sub> O <sub>3</sub> | 14,64  | 14,82  | 14,51  | 14,51 | 15,53   | 15,78  | 14,96   | 15,03         |   |
| Fe <sub>2</sub> O <sub>3</sub> | 2,02   | 2,84   | 2,16   | 2,36  | 2,31    | 2,43   | 2,04    | 1,90.         |   |
| FeO                            | 8,35   | 7;41   | 8,52   | 8,33  | 7,76    | 7,36   | 8,10    | 8,12          |   |
| MnO                            | 0,19   | 0,17   | 0,21   | 0,18  | 0,18    | 0,17   | 0,19    | 0,19          |   |
| MgO                            | 7,50   | 7,66   | 7,57   | 7,49  | 7,58    | 7,60   | 7,71    | 7,92          |   |
| CaO                            | 12,12  | 11,72  | 12,33  | 11,75 | 11,98   | 11,64  | 12,16   | 11,98         |   |
| Na <sub>2</sub> O              | 2,57   | 2,70   | 2,57   | 2,43  | 2,43    | 2,43   | 2,30    | 2,30          |   |
| κ, ο                           | 0,17   | 0,17   | 0,17   | 0,17  | 0,17    | 0,17   | 0,17    | 0,17          |   |
| H <sub>2</sub> O <sup>+</sup>  | 0,64   | 0,59   | 0,56   | 0,39  | 1,03    | 1,06   | 0,82    | 0,74          |   |
| H <sub>2</sub> O <sup>-</sup>  | 0,24   | 0,54   | 0,24   | 0,47  | 0,66    | 0,88   | 0,54    | 0,55          |   |
| P <sub>2</sub> O <sub>5</sub>  | 0,05   | 0,10   | 0,09   | 0,10  | 0,07    | 0,05   | 0,07    | 0,04          |   |
| CO,                            | 0,20   | _      | _      | 0,25  | 0,15    | _      | _       | -             |   |
| c                              | -      | -      | -      | -     | 0,15    | -      | -       | -             |   |
| Сумма                          | 100,14 | 100,53 | 100,10 | 99,93 | 100,51  | 100,04 | 99,96   | <b>99,</b> 96 |   |

Таблица, 31 Химический состав вулканических пород (вес. %)

Примечание. Здесь, а также в табл. 32 в головке (сверху вниз) указаны: номера скважины, керна, секции, интервал отбора керна (см).

| Компонент                                 | Ţ        |              | 4828   | •       |        |                   | 4820   | ;              |
|-------------------------------------------|----------|--------------|--------|---------|--------|-------------------|--------|----------------|
| Компонент 2<br>110<br>SiO <sub>2</sub> 48 | 21       | 21 22<br>3 1 |        | 24      |        | 10                |        | 11             |
| Компонент                                 | 3        | 1            | 3      | 1       | 3      | 1                 | 3      | 4              |
|                                           | 110–117  | 97–105       | 85-93  | 106-115 | 30–33  | 107-115           | 96-105 | 83 <u>-</u> 91 |
| SiO,                                      | 48,75    | 48,87        | 48,83  | 48,78   | 49,12  | 48,91             | 49,24  | 49,31          |
| TiO,                                      | 1,57     | 1,57         | 1,53   | 1,87    | 1,91   | 1,87              | 1,87   | 1,87           |
| AI, 0,                                    | 15,33    | 15,38        | 14,97  | 14,07   | 14,22  | 13,96             | 14,38  | 14,00          |
| Fe, O,                                    | 3,81     | 3,23         | 3,55   | 4,29    | 3,5Ò   | 3,73              | 3,29   | 3,42           |
| FeO                                       | 6,92     | 7,22         | 7,08   | 7,35    | 7,96   | 7,55              | 7,77   | 8,05           |
| MnO                                       | 0,18     | 0,18         | 0,18   | 0,17    | 0,18   | 0,18              | 0,17   | 0,17           |
| MgO                                       | 7,39     | 7,31         | 7,82   | 7,83    | 7,56   | 7,92              | 8,08   | 7,83           |
| CaO                                       | 12,32    | 12,56        | 12,44  | 11,62   | 11,83  | 11,86             | 11,96  | 11,61          |
| Na, O                                     | 2,61     | 2,70         | 2,50   | 2,82    | 2,70   | 2,61              | 2,51   | 2,51           |
| κ,ō                                       | 0,10     | 0,05         | 0,05   | 0,10    | 0,10   | 0,15              | 0,15   | 0,10           |
| н,́о⁺                                     | 0,31     | 0,20         | 0,55   | 0,32    | 0,33   | 0,41              | 0,37   | 0,55           |
| н,0-                                      | 0,82     | 0,74         | 0,79   | 0,88    | 0,72   | 0, <del>9</del> 8 | 0,58   | 0,64           |
| P, O,                                     | 0,03     | Следы        | 0,01   | Следы   | -      | 0,01              | 0,02   | 0,01           |
| co,                                       |          | -            | -      |         | -      |                   | -      | -              |
| c                                         | _        | _            | _      | -       | -      | -                 |        | _              |
| Сумма                                     | a 100,11 | 100,02       | 100,30 | 100,10  | 100,12 | 100,14            | 100,39 | 100,07         |

# Таблица 31 (продолжение)

•

|         |                   |        |       | 482B         |        |         |        |        |
|---------|-------------------|--------|-------|--------------|--------|---------|--------|--------|
| 15      |                   | 1      | 6     | 1            | 18     | 2       | 0      | 21     |
| 2       | 3                 | 1      | 5     | 1            | 2      | 1       | 3      | 2      |
| 120-129 | 20–30             | 4150   | 39–49 | <b>49</b> 57 | 4451   | 120-127 | 43–52  | 9–18   |
| 50,17   | 50,10             | 50,16  | 50,40 | 50,02        | 50,20  | 49,76   | 48,77  | 49,16  |
| 1,38    | 1,38              | 1,37   | 1,37  | 1,37         | 1,37   | 1,57    | 1,49   | 1,44   |
| 15,03   | 15,14             | 14,74  | 15,06 | 14,61        | 14,72  | 15,13   | 15,00  | 14,31  |
| 1,77    | 2,07              | 2,34   | 2,07  | 2,19         | 2,38   | 2,41    | 3,82   | 3,46   |
| 7,93    | 7,66              | 7,83   | 7,31  | 8,10         | 7.78   | 7,33    | 6,84   | 7,47   |
| 0,17    | 0,17              | 0,17   | 0,17  | 0,17         | 0,17   | 0,17    | 0,17   | 0,18   |
| 7,93    | 7,93              | 8,06   | 7,80  | 7,96         | 8,04   | 7,47    | 7,65   | 8,08   |
| 12,22   | 12,10             | 12,15  | 12,03 | 12,14        | 12,14  | 12,18   | 12,44  | 12,44  |
| 2,30    | 2,30              | 2,16   | 2,30  | 2,43         | 2,30   | 2,43    | 2,61   | 2,41   |
| 0,17    | 0,17              | 0,17   | 0,17  | 0,17         | 0,17   | 0,17    | 0,05   | 0,10   |
| 0,70    | 0,52              | 0,55   | 0,48  | 0,42         | 0,46   | 0,76    | 0,46   | 0,36   |
| 0,34    | 0,30              | 0,30   | 0,32  | 0,38         | 0,40   | 0,34    | 0,77   | 0,58   |
| 0,05    | 0,08              | 0,05   | 0,03  | 0,09         | 0,07   | 0,08    | 0,01   | 0,01   |
| -       | -                 | _      | -     | _            |        | _       | _      | _      |
| -       | -                 | -      |       | -            | _      |         | -      | _      |
| 100,16  | <del>99</del> .92 | 100,05 | 99,51 | 100,05       | 100,22 | 99,8    | 100,08 | 100,02 |

|           |        | 482C   |        |       |         | . 4           | 82D     |         |
|-----------|--------|--------|--------|-------|---------|---------------|---------|---------|
| <br>12    | 13     | 14     | 1      | 5     | 8       | 1             | 9       | 10      |
| <br>1     | 2      | 4      | 1      | 4     | 1       | 1             | 2       | 1       |
| <br>5868  | 80-90  | 42-53  | 1–10   | 48-58 | 115-124 | 59-68         | 130-138 | 133-139 |
| <br>49,90 | 49,41  | 49,48  | 49,46  | 49,97 | 47,66   | 48,76         | 48,51   | 48,46   |
| 1,36      | 1,40   | 1,36   | 1,36   | 1,36  | 1,87    | 1,86          | 1,78    | 1,86    |
| 14,60     | 14,31  | 14,24  | 14,40  | 14,32 | 11,56   | 12,85         | 12,73   | 12,38   |
| 2,83      | 3,36   | 2,98   | 3,29   | 2,42  | 7,00    | 4,87          | 4,61    | 5,22    |
| 7,74      | 7,53   | 7,89   | 7,62   | 7,80  | 7,18    | 7,80          | 7,68    | 7,59    |
| 0,17      | 0,17   | 0,17   | 0,18   | 0,17  | 0,17    | 0,17          | 0,20    | 0,17    |
| 8,17      | 8,40   | 8,16   | 8,26   | 7,91  | 7,49    | 7,81          | 7,54    | 8,15    |
| 12,33     | 12,05  | 12,54  | 12,22  | 12,69 | 12,49   | 11,89         | 12,34   | 12,01   |
| 2,32      | 2,41   | 2,32   | 2,32   | 2,32  | 2.43    | 2,57          | 2,57    | 2,57    |
| 0,10      | 0,10   | 0,10   | 0,10   | 0,10  | 0,13    | 0,17          | 0,13    | 0,13    |
| 0,30      | 0,41   | 0,54   | 0,43   | 0,31  | 0,28    | 0,55          | 0,74    | 0,61    |
| 0,54      | 0,58   | 0,50   | 0,56   | 0,58  | 1,35    | 1,09          | 1,07    | 1,06    |
| Следы     | 0,01   | 0.02   | 0,01   | Следы | 0,14    | 0,01          | 0,01    | 0,05    |
| _         | _      | _      | -      | -     | _       | _             | 0,35    | _       |
| _         | -      | 0,12   | -      | -     | _       | <del></del> . | -       |         |
| 100,36    | 100,14 | 100,42 | 100,21 | 99,95 | 99,75   | 100,40        | 100,26  | 100,26  |

| Компонент          |        |        | 482D    |        | 482F    |        | 483     |               |
|--------------------|--------|--------|---------|--------|---------|--------|---------|---------------|
| Компонент 1<br>110 | 11     | 1      | 2       | 13     | 5       | 14     | 15      | 16            |
| Компонент          | 1      | 1      | 3       | ï      | 1       | 1      | 1       | 1             |
|                    | 110118 | 80-87  | 104-108 | 59-70  | 100-108 | 13–21  | 121-130 | 17-83         |
| SiO,               | 48,33  | 48,50  | 49,50   | 49,19  | 48,79   | 49,25  | 49,05   | 49,03         |
| TiO,               | 1,44   | 1,62   | 1,44    | 1,53   | 2,04    | 1,33   | 1,44    | 1,43          |
| A1, Ó,             | 13,48  | 13,82  | 13,86   | 13,59  | 13,02   | 13,22  | 13,56   | 12,49         |
| Fe, O,             | 4,24   | 3,95   | 3,69    | 4,30   | 4,71    | 5,15   | 4,30    | 4,53          |
| FeO                | 8,00   | 7,74   | 7,92    | 7,12   | 7,35    | 7,00   | 6,91    | 8,01          |
| MnO                | 0,15   | 0,14   | 0,15    | 0,14   | 0,14    | 0,15   | 0,14    | 0,15          |
| MgO                | 8,73   | 8,36   | 7,99    | 8,27   | 7,78    | 7,60   | 8,14    | 9,11          |
| CaO                | 12,10  | 11,83  | 12,35   | 11,81  | 11,60   | 12,71  | 12,79   | 11,83         |
| Na, O              | 2,41   | 2,57   | 2,43    | 2,57   | 2,85    | 2,57   | 2,70    | 2,57          |
| к,о                | 0,10   | 0,13   | 0,13    | 0,13   | 0,17    | 0,17   | 0,13    | 0,13          |
| н,́о⁺              | 0,43   | 0,72   | 0,07    | 0,51   | 0,51    | 0,37   | 0,36    | 0,38          |
| н,́о-              | 0,90   | 0,95   | 0,82    | 1,20   | 0,86    | 0,82   | 0,79    | 0, <b>6</b> 8 |
| P, O,              | 0,03   | 0,01   | 0,08    | 0,01   | 0,15    | 0,02   | 0,01    | 0,01          |
| cO,                | -      |        | -       | -      | 0,20    | -      | -       | -             |
| C                  | -      | -      | -       | _      | -       | -      | -       | -             |
| Сумма              | 100,34 | 100,34 | 100,43  | 100,37 | 100,17  | 100,36 | 100,32  | 100,35        |

# Таблица 31. (продолжение)

Таблица 31 (продолжение)

|                                |       |        |       | 483        | B       |        |        |         |
|--------------------------------|-------|--------|-------|------------|---------|--------|--------|---------|
| Kannan                         | 7     | 8      | 12    | 13         | 17      | 19     | 22     | 25      |
| Компонент                      | 2     | 3      | 1     | 3          | 1       | 2      | 2      | 1       |
|                                | 819   | 26–35  | 40-46 | 64-74      | 138–146 | 21–30  | 13–23  | 103-114 |
| SiO <sub>2</sub>               | 48,97 | 46,63  | 48,45 | 1<br>48,23 | 48,28   | 47,65  | 48,64  | 48,72   |
| TiO                            | 1,65  | 1,03   | 1,87  | 2,09       | 2,32    | 2,39   | 1,97   | 2,04    |
| Al <sub>2</sub> O <sub>3</sub> | 14,61 | 15,76  | 15,49 | 13,2       | 3,64    | 13,66  | 14,56  | 14,45   |
| Fe <sub>2</sub> O,             | 3,15  | 4,34   | 2,87  | 7,37       | 64      | 6,26   | 3,50   | 3,19    |
| FeO                            | 7,54  | 6,35   | 7,99  | 7,06       | 8,96    | 7,89   | 8,64   | 8,42    |
| MnO                            | 0,17  | 0,17   | 0,20  | 0,19       | 0,20    | 0,18   | 0,18   | 0,18    |
| MgO                            | 7,74  | 10,26  | 7,43  | 7,42       | 7,13    | 7,05   | 7,68   | 7,84    |
| CaO                            | 12,19 | 11,59  | 11,71 | 11,06      | 11,04   | 10,96  | 11,71  | 11,19   |
| Na <sub>2</sub> O              | 2,61  | 2,13   | 2,51  | 2,70       | 2,70    | 2,94   | 2,70   | 2,59    |
| κ,0                            | 0,15  | 0,10   | 0,18  | 0,20       | 0,20    | 0,15   | 0,15   | 0,18    |
| H <sub>2</sub> O*              | 0,42  | 1,50   | 0,30  | 0,38       | 0,72    | 0,36   | 0,27   | 0,36    |
| H <sub>2</sub> O <sup>-</sup>  | 0,58  | 0,59   | 0,54  | 0,66       | 0,55    | 0,59   | 0,57   | 0,80    |
| P <sub>2</sub> O <sub>5</sub>  | Следы | Следы  | Следы | Следы      | Следы   | Следы  | Следы  | Следы   |
| co,                            | -     | -      | -     | _          | -       | -      | _      | -       |
| С                              | -     | _      | -     | -          | -       | -      | -      | -       |
| Сумма                          | 99,68 | 100,45 | 99,54 | 100,52     | 100,38  | 100,08 | 100,57 | 99,96   |

|        |   |      |       |      |      |      |      |       |      |      |      |      |       |      |       | 4       | <u> </u> | <b>I</b> | L    |
|--------|---|------|-------|------|------|------|------|-------|------|------|------|------|-------|------|-------|---------|----------|----------|------|
| 100,51 | I | I    | Следы | 0,61 | 0,56 | 0,15 | 2,82 | 11,02 | 7,53 | 0,18 | 8,48 | 4,64 | 13,72 | 2,14 | 48,66 | 10-21   | 2        |          |      |
| 100,54 | 1 | I    | 0,02  | 0,72 | 0,72 | 0,15 | 2,82 | 11,87 | 7,06 | 0,18 | 8,48 | 3,56 | 14,07 | 1,87 | 49,02 | 15-23   | ω        | 17       | 4838 |
| 100,68 | J | 1    | 0,03  | 0,60 | 0,30 | 0,15 | 2,70 | 11,97 | 7,90 | 0,21 | 7,66 | 3,77 | 14,38 | 1,79 | 49,13 | 70-78   | 1        | 8        | Ű    |
| 100,49 | ł | I    | Следы | 0,92 | 0,52 | 0,31 | 2,82 | 11,96 | 7,47 | 0,19 | 5,90 | 4,68 | 15,08 | 1,70 | 48,93 | 110-119 | -        | <u>а</u> |      |
| 100,58 | I | 0,35 | 0,04  | 1,16 | 0,67 | 0,20 | 2,70 | 12,09 | 7,65 | 0,18 | 5,76 | 4,96 | 14,69 | 1,61 | 48,52 | 33-40   | 3        | 2        | 483C |
| 100,01 | I | 1    |       | 0,52 | 0,18 | 0,10 | 2,60 | 12,46 | 7,66 | 0,17 | 7,84 | 3,41 | 14,00 | 1,45 | 49,62 | 3-14    | ω        | 4        |      |
| 100,01 | I | 0,65 | 0,03  | 1,80 | 1,55 | 0,12 | 2,94 | 9,71  | 7,42 | 0,11 | 6,88 | 5,68 | 14,13 | 2,21 | 46,78 | 1326    | 1        |          |      |
| 100,55 | ł | 0,35 | 0,01  | 0,44 | 0,35 | 0,15 | 2,49 | 12,20 | 6,85 | 0,22 | 9,68 | 4,23 | 12,85 | 1,95 | 48,78 | 140-148 | з        | 11       | 485A |
| 100,06 | 1 | I    | 0,05  | 0,57 | 0,33 | 0,12 | 2,70 | 11,67 | 6,84 | 0,18 | 9,08 | 3,55 | 13,53 | 2,08 | 49,36 | 21-23   | 1        | 12       |      |
|        |   |      |       |      |      |      |      |       |      |      |      |      |       |      |       |         |          |          |      |

|   |         |         |        |         | 483    |       |         |        | 4838  |
|---|---------|---------|--------|---------|--------|-------|---------|--------|-------|
| 1 | 17      | 20      | 21     | 22      | 23     | 25    | 26      |        | 4     |
| 1 | 2       | -       | 2      | 4       | 2      | -     | 2       | ω      | 5     |
|   | 120-128 | 118–127 | 43–51  | 117-127 | 92-103 | 48-58 | 140-149 | 98-108 | 13-23 |
| 1 | 47,87   | 48,63   | 48,69  | 48,16   | 48,23  | 47,92 | 48,11   | 48,70  | 48,57 |
|   | 1,10    | 1,94    | 2,12   | 1,93    | 1,99   | 2,56  | 2,36    | 2,51   | 1,34  |
|   | 15,42   | 13,22   | 13,06  | 14,19   | 15,49  | 13,75 | 13,54   | 13,06  | 14,93 |
|   | 3,17    | 4,49    | 4,52   | 4,40    | 5,18   | 4,72  | 5,34    | 5,64   | 2,76  |
|   | 6,75    | E6'8    | 9,11   | 7,58    | 6,22   | 8,65  | 8,55    | 8,77   | 7,44  |
|   | 0,13    | 0,17    | 0,17   | 0,18    | 0,17   | 0,19  | 0,19    | 0,19   | 0,16  |
|   | 86′6    | 7,70    | 7,48   | 7,33    | 7,44   | 96,9  | 6,87    | 7,03   | 8,73  |
|   | 12,34   | 10,50   | 11,55  | 12,02   | 10,96  | 11,29 | 11,01   | 10,84  | 12,21 |
|   | 2,30    | 2,70    | 2,70   | 2,57    | 2,85   | 2,85  | 2,85    | 2,61   | 2,41  |
|   | 0,09    | 0,13    | 0,13   | 0,13    | 0,13   | 0,17  | 0,13    | 0,15   | 0,10  |
|   | 0,65    | 0,29    | 0,13   | 0,59    | 0,54   | 0,32  | 0,53    | 0,37   | 0,57  |
|   | 0,57    | 0,63    | 0,59   | 0,74    | 1,08   | 0,54  | 0,77    | 0,68   | 0,50  |
|   | 0,01    | 0,12    | 0,02   | Следы   | Следы  | Следы | Следы   | Следы  | Следы |
|   | 1       | I       | I      | I       | 0,15   | I     | ł       | I      | ł     |
|   | 1       | I       | 1      | I       | I      | I     | ł       | I      | ł     |
|   | 100,38  | 99,45   | 100,27 | 28,66   | 100,43 | 99,92 | 100,25  | 100,55 | 99,72 |
| 1 |         |         |        |         |        |       |         |        |       |
|   |         |         |        |         |        |       |         |        |       |

11. Зак. 2150

161

|           | ł     |        |        | 485A  |        |        |        |        |         |
|-----------|-------|--------|--------|-------|--------|--------|--------|--------|---------|
|           | 13    | 14     | 18     |       | 23     |        | 24     | 25     | 29      |
| Компонент | 1     | 1      | 1      | 1     | 2      | 3      | 2      | 1      | 3       |
|           | 35-42 | 4356   | 920    | 6676  | 38–50  | 60-72  | 77-87  | 63–74  | 118-130 |
| SiO,      | 48,87 | 49,04  | 48,64  | 46,67 | 48,43  | 49,12  | 48,59  | 48,73  | 48,92   |
| TiO,      | 1,91  | 1,95   | 2,16   | 2,38  | 2,17   | 2,16   | 1,95   | 2,08   | 2,12    |
| AI, Ö,    | 13,85 | 13,70  | 13,87  | 12,31 | 13,69  | 14,11  | 14,55  | 13,81  | 12,30   |
| Fe, O,    | 2,87  | 3,55   | 3,62   | 5,26  | 4,60   | 4,06   | 3,58   | 4,48   | 4,16    |
| FeO       | 9,23  | 9,06   | 8,98   | 9,25  | 8,29   | 8,30   | 8,72   | 8,65   | 8,86    |
| MnO       | 0,22  | 0,20   | 0,17   | 0,15  | 0,20   | 0,18   | 0,17   | 0,20   | 0,17    |
| MgO       | 6,94  | 7,12   | 7,03   | 7,44  | 7,30   | 6,83   | 7,46   | 6,92   | 7,75    |
| CaO       | 12,56 | 11,71  | 11,69  | 11,03 | 11,37  | 11,65  | 11,22  | 11,68  | 11,57   |
| Na, O     | 2,51  | 2,61   | 2,61   | 2,70  | 2,61   | 2,61   | 2,61   | 2,60   | 2,70    |
| к, о      | 0,12  | 0,12   | 0,12   | 0,20  | 0,12   | 0,12   | 0,24   | 0,15   | 0,15    |
| н,о⁺      | 0,41  | 0,29   | 0,60   | 1,28  | 0,71   | 0,55   | 0,81   | 0,68   | 0,68    |
| н, о-     | 0,34  | 0,55   | 0,59   | 0,94  | 0,52   | 0,50   | 0,52   | 0,62   | 0,73    |
| P, O.     | 0,05  | 0,06   | 0,05   | 0,01  | 0,04   | 0,04   | 0,04   | 0,04   | 0,01    |
| co,       | _     | 0,60   | 0,30   | 0,15  |        | _      | 0,20   | ·      | -       |
| c -       | -     | _      | -      | -     | -      | -      | -      | _      | _       |
| Сумма     | 99,88 | 100,50 | 100,43 | 99,77 | 100,05 | 100,23 | 100,66 | 100,64 | 100,12  |

не превышает 1 мм. Основная масса породы сложена лейстами плагиоклаза (30–50%), клинопироксеном (30–40%), рудным минералом (3–7%) и иногда вулканическим стеклом, выполняющим интерстиции между плагиоклазом и клинопироксеном.

Из вторичных минералов развиты смектит и карбонат, которые, как правило, частично замещают вулканическое интерстициальное стекло. Микроструктура массивных базальтов интергранулярная, интерсертальная, субофитовая или офитовая, а иногда гломеропорфировая.

В скв. 482В и 485А среди базальтов выделено восемь самостоятельных литологофациальных единиц (серий), а в скв. 483В — девять. Химический состав базальтов, слагающих выделенные серии, варьирует в незначительных пределах. Однако строгой закономерности в изменении химизма базальтов по вертикальным разрезам не наблюдается, за исключением четвертой серии, которая в скв. 482 и 485 представлена массивными плагиоклазами или плагиоклаз-оливиновыми слабопорфировыми базальтами, а в скв. 483 — массивными афировыми базальтами. Базальты четвертой серии характеризуются несколько меньшими, по сравнению с базальтами других серий, содержаниями SiO<sub>2</sub>, T i и Fe<sup>2+</sup>, а также повышенными содержаниями Al<sub>2</sub>O<sub>3</sub>, Mg и высокотемпературной воды. Особенно отчетливо эти особенности химизма проявлены в массивных афировых базальтах скв. 482. Кроме того, можно отметить, что существует слабый тренд увеличения концентраций SiO<sub>2</sub> и Ca и некоторое уменьшение содержаний T i в базальтах вверх по разрезу скважины (рис. 49).

Однако установленные вариации в химическом составе базальтов, слагающих различные серии потоков, лежат в пределах, характерных для вулканической серии океанических абиссальных толеитов.

На основании результатов полных силикатных анализов магматических пород (табл. 31) построены двухкомпонентные диаграммы для главных породообразующих элементов и некоторых петрохимических коэффициентов. Из трехкомпонентной AFM-диаграммы Куно видно, что все проанализированные базальты относятся к толеитовому типу со слабо проявленным феннеровским трендом дифференциации (с накоплением Fe) (рис. 50). Количественные соотношения некоторых породообразующих элементов (FeO-MgO, Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>-MgO, Al<sub>2</sub>O<sub>3</sub>-CaO, MgO-CaO, K<sub>2</sub>O-TiO<sub>2</sub>) также показывают, что рассматриваемые базальты по своему химизму относятся к 162

| 3       | 0       | 31<br>1<br>98–119 | 33               | 34     | 3      | 5                | 38      | 3            | 19         |
|---------|---------|-------------------|------------------|--------|--------|------------------|---------|--------------|------------|
| 1       | 2       | 1                 | 2                | 2      | 1      | 5                | 2       | 3            | 4          |
| 121–134 | 116-129 | 98–119            | 7–19             | 78–89  | 21–31  | 48–62            | 104-119 | 47–57        | 105-115    |
| 48,51   | 49,52   | 48,18             | 48,13            | 48,73  | 48,81  | 48,59            | 48,16   | 48,31        | 1<br>48,38 |
| 2,71    | 2,04    | 1,95              | 2,29             | 1,94   | 1,96   | 1,95             | 2,12    | 2,26         | 1,93       |
| 11,12   | 13,60   | 13,81             | 13,44            | 12,89  | 13,83  | 13,49            | 14,26   | 14,29        | 13,84      |
| 6,06    | 3,19    | 3,64              | 4,00             | 4,04   | 3,09   | 3,18             | 3,04    | 3,33         | 3,26       |
| 9,74    | 7,39    | 8,87              | 9,43             | 8,55   | 8,65   | 8,83             | 8,83    | <b>8</b> ,84 | 8,91       |
| 0,17    | 0,14    | 0,16              | 0,17             | 0,14   | 0,14   | 0,14             | 0,16    | 0,14         | 0,14       |
| 7,23    | 8,29    | 8,33              | 7, <del>99</del> | 8,21   | 7,86   | 7,75             | 7,84    | 6,83         | 8,07       |
| 10,39   | 12,64   | 11,21             | 10,40            | 11,60  | 11,81  | 12,24            | 11,11   | 10,94        | 11,52      |
| 2,70    | 2,49    | 2, <b>49</b>      | 2,51             | 2,41   | 2,49   | 2,4 <del>9</del> | 2,49    | 2,70         | 2,60       |
| 0,15    | 0,15    | 0, <b>20</b>      | 0,24             | 0,12   | 0,10   | 0,10             | 0,15    | 0,10         | 1,10       |
| 0,50    | 0,40    | 0,60              | 0,73             | 0,65   | 0,72   | 0,62             | 1,75    | 0,72         | 0,73       |
| 0,95    | 0,34    | 0,79              | 0,86             | 0,87   | 0,66   | 0,71             | 0,90    | 0,17         | 0,90       |
| 0,14    | 0,04    | 0,02              | 0,01             | 0,03   | 0,01   | 0,01             | 0,02    | 0,01         | 0,01       |
| -       | _       | -                 | -                | -      | _      | -                | -       | _            | -          |
| -       | -       | -                 | -                | -      | _      | -                | -       | -            | _          |
| 100.37  | 100,23  | 100,25            | 100,20           | 100,18 | 100,13 | 100,24           | 100,23  | 99,64        | 100,39     |

широко распространенному в океане типу абиссальных толеитов. При этом пары FeO-MgO и  $Al_2O_3$ -TiO<sub>2</sub> обнаруживают слабо проявленную обратную корреляционную зависимость (рис. 51, 52), в то время как  $Al_2O_3$ -MgO,  $Al_2O_3$ -CaO, MgO-CaO и  $K_2O$ -TiO<sub>2</sub> не обнаруживают практически никакой корреляционной зависимости между членами пар (рис. 53-56). Однако на всех этих диаграммах вскрывается одна закономерность. Химический состав базальтов станции 482 несколько отличается от химического состава базальтов станций 483 и 485.

Составы базальтов последних станций в среднем близки между собой.

В чем же заключаются отмеченные выше различия? В целом базальты станции 482 содержат бо́льшие количества MgO, Al<sub>2</sub>O<sub>3</sub>, CaO и несколько меньшие концентрации FeO и TiO<sub>2</sub> по сравнению с базальтами станций 483 и 485. На диаграмме Миясиро практически все проанализированные базальты, за исключением нескольких образцов, лежат в поле абиссальных океанических толеитов ниже граничной линии, отделяющей свежие породы от пород, измененных вторичными процессами (рис. 57). Таким образом, отмеченная выше разница в химическом составе базальтов является разницей состава первичных выплавок и никоим образом не может быть объяснена эпимагматическими изменениями пород. Тем более что для химического анализа отбирались максимально свежие образцы пород.

На диаграмме Готтини вскрыта слабая обратная логарифмическая корреляционная зависимость между параметром  $t = (Al_2O_3 - Na_2O)/TiO_2$  и TiO<sub>2</sub>, характерная также для абиссальных океанических толеитов. Однако интервал расположения фигуративных точек по параметру в рассматриваемом случае значительно уже, чем это свойственно абиссальным толеитам Атлантического океана (рис. 58). Это обстоятельство свидетельствует о значительно меньшей степени дифференцированности базальтов Восточно-Тихоокеанского поднятия по сравнению с базальтами Срединно-Атлантического хребта и о более низкой их глиноземистости.

На *а*—*s*-диаграмме Дмитриева составы исследуемых базальтов также лежат в поле абиссальных океанических толеитов, занимая его небольшую левую часть. Характер расположения фигуративных точек состава базальтов свидетельствует об их обогащенности мафическими компонентами (и в первую очередь Fe, Ti и Mg) по сравнению с базальтами Атлантического океана (рис. 59). В обеих сравниваемых провинциях сущест-







вуют вариации в распределении этих элементов. В тех случаях, когда резко возрастает железистость пород, в них уменьшается содержание Mg и увеличивается концентрация Ti. Эта геохимическая специфика является следствием различия степени дифференцированности верхней мантии под Атлантическим и Тихим океанами. Вещество мантии Тихоокеанской провинции на уровне генерации первичных расплавов более дифференцированно и соответственно более обогащено перечисленными выше сидерофильными элементами по сравнению с мантийным субстратом Атлантической провинции, для которой характерны несколько более высокие содержания литофильных элементов. На *а*-*s*-диаграмме составы базальтов станции 482 занимают в среднем более удаленную от





Рис. 56. Двухкомпонентная вариационная диаграмма K<sub>2</sub>O-TiO<sub>2</sub> Условные обозначения см. на рис. 50

начала координат позицию по сравнению с базальтами станций 483 и 485. Это свидетельствует об их некотором обогащении литофильными компонентами. Судя по этой диаграмме, составы всех рассматриваемых базальтов образуют комплементарный ряд с составами океанических лерцолитов (см. рис. 59, поля I, II и III). Отсюда можно сделать вывод, что первичные базальтовые расплавы возникли за счет селективного плавления океанических лерцолитов. Разница в составе базальтов рассматриваемых станций является следствием различной степени селективности плавления мантийного субстрата. Вряд ли эту геохимическую особенность базальтов можно объяснить кристаллизационной дифференциацией, так как в данном случае нет существенной разницы в составе и количестве порфировых вкрапленников. Тем более что их роль в объемном минеральном составе пород весьма незначительна.

На диаграмме Макдональда [Macdonald, 1968] базальты Калифорнийского залива также легли в поле абиссальных океанических толеитов с отчетливым толеитовым трендом дифференциации (рис. 60). На этой диаграмме составы базальтов станций 482, 483 и 485 несколько разделились по соотношению суммы щелочных элементов и SiO<sub>2</sub>. Интерпретация этой диаграммы с использованием результатов экспериментов Д. Грина и А. Рингвуда [Green, Ringwood, 1967] позволяет сделать вывод о том, что выплавление базальтов происходило в условиях средних давлений, примерно отвечающих глубинам около 20—25 км, а их эволюция — в условиях низких давлений. Отсюда следует, что порфировые вкрапленники образовались не в первичной магматической камере (не в протомагматическую стадию), а по крайней мере в менее глубинных промежуточных камерах или в процессе излияния базальтов на дно океана внутри лавовых потоков или силлов. Конечно, в таких условиях отсадка кристаллов оливина или флотация кристаллов плагиоклаза играли ничтожную роль.

Ниже будет рассмотрено распределение редкоземельных элементов в базальтах Калифорнийского залива. Ю.А. Балашов [1976] обратил внимание на то, что редкоземельные элементы являются чуткими индикаторами процессов магматической дифференциации. На кристаллизационном этапе дифференциации определяющими факторами фракционирования редкоземельных элементов являются их кристаллохимические различия (монотонное изменение ионных радиусов от La к Lu), а на ликвационном и постмагматическом этапах — геохимические особенности, которые заключаются в сродстве редкоземельных элементов к определенным анионам (CO<sub>3</sub><sup>2</sup>, F<sup>-</sup> и PO<sub>4</sub><sup>3-</sup>) и в зависимости их концентраций от щелочных элементов.

Геохимический фактор фракционирования редкоземельных элементов играет су-



Рис. 57. Диаграмма Миясиро

Поля: І — толеитов Исландии, ІІ — абиссальных океанических толеитов, ІІІ — щелочных оливиновых базальтов островов Атлантического океана; V—V — линия, отделяющая поле вторично измененных пород от свежих

Остальные условные обозначения см. на рис. 50

Рис. 58. Диаграмма Готтини  $t = (Al_2O_3 - Na_2O)/TiO_2$ 

Числа у кривых - номера рейсов.

Условные обозначения см. на рис. 50



Рис. 59. Диаграмма Дмитриева:  $a = Al_2O_3 + K_2O + CaO + Na_2O$ ,  $s = SiO_2 - (MgO + Fe_2O_3 + FeO + +TiO_2 + MnO)$ 

А – базальты и лерцолиты: І – состав базальтов Калифорнийского залива, ІІ – поле абиссальных толеитов Атлантического океана, ІІІ – поле океанических лерцолитов; Б – базальты Калифорнийского залива

Условные обозначения см. на рис. 50



Рис. 60. Диаграмма Макдональда

AB — состав первичной выплавки щалочных оливиновых базальтов; ОТ —состав первичной выплавки океанических толеитов; ОВ — состав первичной выплавки оливиновых базальтов (смесь ОТ и AB); H, M и L показывают направление дифференциации расплавов соответственно при относительно высоком (13—18 кбар), среднем (9 кбар) и низком давлениях (по данным Д. Грина и А. Рингвуда, [Green, Ringwood, 1967]); I — III — тренд дифференциации базальтов: I — скв. 482, II — скв. 483, III — скв. 485

щественную роль в изменении их концентраций в вулканических породах, характеризующихся повышенными содержаниями щелочных элементов и особенно К. Рассматриваемые нами базальты характеризуются предельно низкими концентрациями Na и K и незначительными вариациями в их содержаниях. Поэтому в данном случае главным фактором фракционирования редкоземельных элементов являются их кристаллохимические различия.

Анализ содержаний редкоземельных элементов в базальтах Калифорнийского залива (табл. 32) показывает, что в среднем для всех исследуемых образцов характерна относительная обогащенность средними и тяжелыми редкоземельными элементами.

Однако в пределах различных станций можно выделить два типа фракционирования редкоземельных элементов. Так, для пород станций 483 и 485 характерна обогащенность Еu и Lu (по сравнению с Sm и Yb соответственно). Для базальтов станций 482 мы наблюдаем обратную картину, т.е. дефицит Eu и Lu (по сравнению с Sm и Yb). Эти закономерности соблюдаются в целом для всех серий каждой станции, за исключением второй и четвертой серий. Во второй серии станций 483 и 485 при избытке Eu (по сравнению с Sm) мы наблюдаем дефицит Lu (по сравнению с Yb). Аналогичная картина характерна для четвертой серии станций 482 и 483. Эти данные свидетельствуют о несколько ином характере фракционирования редкоземельных элементов во второй и четвертой сериях по сравнению со всеми остальными (рис. 61).

Весьма интересным является также поведение суммы La, Sm, Eu, Yb и Lu в зависимости от порядкового номера серии, т.е. от глубины его залегания во втором слое океанической коры. На станции 483 для четвертой серии характерен резкий дефицит названной суммы редкоземельных элементов. Это еще раз подтверждает специфику процессов фракционирования редкоземельных элементов при формировании этой серии. Важно отметить также, что, несмотря на резкие различия в содержании суммы La, Sm, Eu, Yb и Lu для каждой станции в базальтах верхних серий, с глубиной эти разли-

Таблица 32 Редкоземельные элементы в составе вулканических пород (г/т)

| Компо-                         |          |         |      |       | 482B    |        |         |        |         |  |
|--------------------------------|----------|---------|------|-------|---------|--------|---------|--------|---------|--|
| Компо-                         | 11       | 12      | 13   | 1     | 1       | 4      |         | 1      | 5       |  |
| нент                           | 1        | 1       | 1    |       | 1       | 2      | 3       | 1      | 2       |  |
|                                | 77-85    | 107–113 | 5461 | 12-20 | 103-106 | 94–101 | 109–119 | 94–100 | 120–129 |  |
| La <sub>2</sub> O <sub>2</sub> | ۱<br>4,0 | 4,2     | 3,9  | 3,8   | 4,4     | 3,0    | ı 3,0   | 2,6    | 2,4     |  |
| Ce <sub>2</sub> O <sub>2</sub> | 9,5      | -       |      | -     | -       | 9,2    | -       | 9,7    | -       |  |
| Sm, O,                         | 4,7      | 4,8     | 4,6  | 5,1   | 3,8     | 3,9    | 4,1     | 3,8    | 3,0     |  |
| Eu <sub>2</sub> O <sub>3</sub> | 1,6      | 1,25    | 1,2  | 1,5   | 1,25    | 1,7    | 1,0     | 1,5    | 1,25    |  |
| Tb <sub>2</sub> O <sub>3</sub> | 1,3      | -       | _    | _     | _       | -      | -       | -      | -       |  |
| Yb, O,                         | 3,2      | 3,7     | 3,4  | 3,6   | 3,0     | 2,9    | 2,9     | 3,0    | 3,6     |  |
| Lu <sub>2</sub> O,             | 0,63     | 0,61    | 0,6  | 0,71  | 0,55    | 0,54   | 0,40    | 0,58   | 0,61    |  |

Таблица 32 (продолжение)

.

|                                |       | 482B   |       |            |        |      | 32C   | -          |       |   |
|--------------------------------|-------|--------|-------|------------|--------|------|-------|------------|-------|---|
| Компо-                         | 22    | 24     |       | 10         | · -· · | 11   | 12    | 13         | 14    |   |
| нент                           | 3     | 1      | 3     | 1          | 3      | 4    | 1     | 2          | 4     |   |
|                                | 85-93 | 106115 | 30 39 | 107-115    | 96-105 | 8391 | 58-68 | 80-90      | 42–53 |   |
| La, O,                         | 3,2   | 4,2    | 5,0   | י ו<br>3,7 | 3,3    | 4,0  | 3,2   | , i<br>3,0 | 2,7   | ļ |
| Ce, O,                         | -     | 10     | _     | _          | -      | 10   | _     | _          | 7,8   |   |
| Sm <sub>2</sub> O,             | 4,1   | 5,1    | 4,9   | 5,0        | 4,8    | 5,0  | 3,3   | 3,2        | 3,3   |   |
| Eu, 0,                         | 1,2   | 1,8    | 1,5   | 1,2        | 1,4    | 1,7  | 1,4   | 1,3        | 1,5   |   |
| Tb, 0,                         |       | 0,99   | -     | _          | _      | 0,74 | _     | _          | 0.60  |   |
| Yb, 0,                         | 3,1   | 4,0    | 4,4   | 3,9        | 3,8    | 3,4  | 2,7   | 3.1        | 2.9   |   |
| Lu <sub>2</sub> O <sub>3</sub> | 0,59  | 0,76   | 0,72  | 0,77       | 0,64   | 0,57 | 0,57  | 0,55       | 0,67  |   |

Таблица 32 (продолжение)

|                                | 482F    |          |         |       | 483     |         | -        |         |   |
|--------------------------------|---------|----------|---------|-------|---------|---------|----------|---------|---|
| KoMPO                          | 5       | 14       | 15      | 16    | 17      | 20      | 21       | 22      | Γ |
| нент                           | 1       | 1        | 1       | 1     | 2       | 1       | 2        | 4       | t |
|                                | 100-108 | 13–21    | 121-130 | 71-83 | 120-128 | 118–127 | 4351     | 117-127 | Γ |
| Le <sub>2</sub> O,             | 3,0     | 3,5      | 3,7     | 2,6   | 2,8     | 6,2     | 5.5      | 3,6     | 1 |
| Ce, 0,                         | 11      | <u> </u> | -       | 6,7   | _       | _       | <u> </u> | 9,8     |   |
| Sm <sub>2</sub> O <sub>3</sub> | 4,8     | 3,1      | 3,4     | 3,5   | 2,3     | 5,2     | 5,5      | 4.8     |   |
| Eu, O,                         | 1,9     | 1,4      | 1,2     | 1,5   | 0,70    | 2,0     | 2,3      | 1.6     |   |
| Tb, 0,                         | 0,85    | _        | _       | 0,86  | _       | _       | _        | 0,78    |   |
| Yb, O,                         | 3,6     | 3,1 -    | 3,5     | 2,6   | 3,5     | 5,2     | 2,6      | 3.0     |   |
| Lu <sub>2</sub> O <sub>3</sub> | 0,61    | 0,62     | 0,63    | 0,57  | 0,53    | 0,93    | 1,0      | 0,48    |   |

|          |                       |                                        |              | 48   | 32B     | -     |          |         |       |
|----------|-----------------------|----------------------------------------|--------------|------|---------|-------|----------|---------|-------|
| 15       | 1                     | 6                                      | 11           | 3    | 20      | )     |          | 21      | 22    |
| 3        | 1                     | 5                                      | 1            | 2    | 1       | 3     | 2        | 3       | 1     |
| 2030     | 4150                  | 39-49                                  | <b>49</b> 57 | 4451 | 120-127 | 43-52 | 9–18     | 110-117 | 97-95 |
| 4,0      | '<br>2,6 <sup>·</sup> | '''''''''''''''''''''''''''''''''''''' | 3,1          | 3,5  | 3,0     | 2,6   | '<br>3,6 | 4,8     | 3,1   |
| <u> </u> | -                     | 7,8                                    | -            | -    | 8,0     | -     |          | 10      | -     |
| 3,3      | 3,1                   | 3,4                                    | 3,2          | 3,3  | 3,9     | 4,1   | 4,0      | 4,2     | 4,2   |
| 1,1      | 0,99                  | 1,4                                    | 1,8          | 1,15 | 1,4     | 1,1   | 1,3      | 1,7     | 1,3   |
| _        | -                     | 0,61                                   |              | _    | 1,1     | -     | _        | 0,56    | _     |
| 3,2      | 2,3                   | 2,7                                    | 2,8          | 3,7  | 3,4     | 3,0   | 3,6      | 3,2     | 3,4   |
| 0,42     | 0,46                  | 0,47                                   | 0,62         | 0,54 | 0,58    | 0,47  | 0,67     | 0,67    | 0,67  |

| 4    | B2C   |         |       |         |         | 482     |      |         |               |
|------|-------|---------|-------|---------|---------|---------|------|---------|---------------|
| 1    | 5     | 8       |       | 9       | 10      | 11      | 1    | 2       | 13            |
| 1    | 4     | 1       | . 1   | 2       | 1       | 1       | 1    | 3       | 1             |
| 1–10 | 48-58 | 115-124 | 59-68 | 130-139 | 133-139 | 110-118 | 8087 | 104-108 | 5 <b>9</b> 70 |
| 4,1  | 3,7   | 4,0     | 5,0   | 4,3     | 4,0     | 3,1     | 2,5  | 3,2     | 3,6           |
| -    | -     | -       | 11    | -       | -       | 8,7     | -    |         | _             |
| 3,5  | 3,1   | 4,2     | 4,8   | 4,8     | 4,8     | 3,9     | 3,8  | 3,2     | 3,7           |
| 1,25 | 1,3   | 1,6     | 1,7   | 1,8     | 1,1     | 1,4     | 1,2  | 1,2     | 1,9           |
| _    | -     | _       | 0,59  | -       | _       | 0,62    | _    | _       | _             |
| 3,8  | 2,2   | 3,3     | 4,1   | 4,3     | 3,6     | 3,1     | 3,2  | 3,2     | 3.3           |
| 0,55 | 0,68  | 0,68    | 0,67  | 0.7     | 0.73    | 0.53    | 0.56 | 0.66    | 0.49          |

|        |       | 483     |        |       |      | 4838  |       |       |         |
|--------|-------|---------|--------|-------|------|-------|-------|-------|---------|
| 23     | 25    | 2       | 6      | 4     | 7    | 8     | 12    | 13    | 17      |
| 2      | 1     | 2       | 3      | 5     | 2    | 3     | 1     | 3     | 1       |
| 92-103 | 48-58 | 140-149 | 98-108 | 13-23 | 8-19 | 26-35 | 40-46 | 64-74 | 138-146 |
| 6,4    | 4,3   | 6,2     | 5,1    | 2,6   | 5,6  | 1,6   | 3,7   | 6,4   | 5,5     |
| _      | -     | 13      | 16     | -     | -    | -     | -     | 16    | -       |
| 5,0    | 5,8   | 5,6     | 5,7    | 2,2   | 4,0  | 2,1   | 4,1   | 5,2   | 5,5     |
| 1,95   | 1,9   | 2,0     | 2,1    | 1,3   | 1,4  | 1,2   | 1,6   | 2,0   | 2,0     |
| _      | _     | 0,96    | 0,75   | _     | _    | _     | _     | 0,68  | _       |
| 4,3    | 5,0   | 5,3     | 4,7    | 3,6   | 2,6  | 2,4   | 4,4   | 3,8   | 4,4     |
| 0,75   | 1,0   | 0.84    | 0,97   | 0,46  | 0,7  | 0,43  | 0,78  | 0,7   | 1,14    |

|                                |          |          |         | 48:      | 38    |       |         |      |   |
|--------------------------------|----------|----------|---------|----------|-------|-------|---------|------|---|
| KoMIO                          | 19       | 22       | 25      | 2        | 7     | 30    | 32      |      | T |
| HEHT                           | 2        | 2        | 1       | 2        | 3     | 1     | 1       | 3    | 1 |
|                                | .21–30   | 13-23    | 103-114 | 10-21    | 15-25 | 70–78 | 110-119 | 3340 |   |
| Le, O,                         | ı<br>5,7 | '<br>3,5 | 3,9     | '<br>4,4 | 4,4   | 4,5   | 3,9     | 4,5  | I |
| Ce, 0,                         | _        | -        | _       | 14       | -     | _     | -       | -    |   |
| Sm <sub>2</sub> O,             | 5,7      | 4,2      | 4,4     | 4,7      | 4,9   | 4,4   | 3,7     | 4,0  |   |
| Eu,O,                          | 2,1      | 1,8      | 1,9     | 2,0      | 2,0   | 1,8   | 1,9     | 1,8  |   |
| Tb, O,                         |          | _        | _       | 0,67     | _     | _     | -       | _    |   |
| Yb, O,                         | 5,5      | 3,8      | 4,2     | 3,9      | 4,1   | 3.6   | 3,7     | 3,1  |   |
| Lu <sub>2</sub> O <sub>3</sub> | 1,2      | 0,67     | 0,81    | 0,81     | 0,95  | 0,7   | 0,8     | 0,57 |   |

# Таблица 32 (продолжение)

Таблица 32 (окончание)

|                    |       |       |       | 485A       |         |         |        | - |
|--------------------|-------|-------|-------|------------|---------|---------|--------|---|
|                    | 23    | 24    | 25    | 29         | 30      |         | 31     | Γ |
| Компо-<br>нент     | 3     | 2     | 1     | 3          | 1       | 2       | 1      | T |
|                    | 60-72 | 77–87 | 63–74 | 118-130    | 121-134 | 116–129 | 98-119 | T |
|                    | 4,8   | 4,8   | 4,4   | <b>4,4</b> | 5,4     | 3,9     | 4,1    | T |
| Cu, O,             | _     | _     | 16    | _          | _       | -       | 12     |   |
| Sm, O,             | 5,4   | 5,2   | 5,7   | 6,1        | 5,7     | 5,1     | 4,0    |   |
| Eu, O,             | 2,5   | 2,2   | 2,1   | 1,8        | 2,5     | 1,9     | 1,8    |   |
| ТЬ, Ο,             | -     | -     | 0,78  | -          | -       | -       | 0,76   |   |
| Yb, O,             | 4,1   | 4,2   | 4,9   | 5,6        | 5,7     | 4,6     | 4,2    |   |
| Lu <sub>2</sub> O, | 1,0   | 0,87  | 1,1   | 0,95       | 1,22    | 0,72    | 0,73   |   |

чия стираются и для пород восьмой серии суммарные содержания редкоземельных элементов практически идентичны на всех станциях. Иными словами, в пределах разных станций на более ранних этапах развития вулканизма, стоящих ближе к первичной выплавке по времени образования, различия в суммарной концентрации редкоземельных элементов менее значимы.

Отсюда можно сделать вывод, что первичные магматические расплавы, давшие начало базальтам трех рассматриваемых станций, образовались за счет селективного плавления одинакового по составу мантийного субстрата, проходившего при аналогичных *T—Р*-условиях (имеется в виду сходство глубин образования первичных магматических очагов).

Каков же предполагаемый состав мантийного субстрата, из которого выплавлялись исследуемые базальты? Для базальтов каждой из станций были построены вариационные диаграммы отношений редкоземельных элементов, нормированных относительно их концентраций в абиссальном океаническом толеите, хондрите, плагиоклазсодержащем лерцолите, клинопироксене и плагиоклазе (см. рис. 61). Из рассмотрения этих диаграмм следует, что характер распределения редкоземельных элементов в базальтах Калифорнийского залива примерно одинаков на всех станциях и очень близок к их распределению в среднем океаническом толеите. Из предполагаемого мантийного субстрата ближе всего по распределению редкоземельных элементов к рассматриваемым базальтам стоит плагиоклазсодержащий лерцолит, а из породообразующих минералов — кли-

| 483C | 485A    |       |       |       |       |          |       |          |  |  |  |
|------|---------|-------|-------|-------|-------|----------|-------|----------|--|--|--|
| 4    | 11      |       | 12    | 13    | 14    | 18       |       | 23       |  |  |  |
| 3    | 3       | 1     | 1     | 1     | 1     | 1        | 1     | 2        |  |  |  |
| 3-14 | 140-148 | 13–26 | 21–33 | 35-42 | 43-56 | 9–20     | 66-76 | 38-50    |  |  |  |
| 2,7  | 4,3     | 6,8   | 4,6   | 3,9   | 3,5   | '<br>5,1 | 4,6   | ı<br>5,7 |  |  |  |
| 9,4  | -       | -     | _     | -     | 12    | -        |       | -        |  |  |  |
| 3,2  | 5,0     | 5,3   | 5,2   | 4,9   | 4,9   | 5,0      | 7,0   | 5,6      |  |  |  |
| 1,6  | 2,0     | 2,0   | 2,8   | 2,0   | 1,8   | 2,1      | 2,1   | 2,0      |  |  |  |
| 0,49 | _       | _     | _     | -     | 0,95  | -        | -     | -        |  |  |  |
| 2,7  | 4,0     | 5,8   | 5,3   | 4,5   | 4,4   | 5,3      | 5,4   | 3,9      |  |  |  |
| 0,68 | 0.88    | 1,15  | 0,93  | 1.0   | 0.97  | 0,79     | 1,22  | 0,91     |  |  |  |

.....

|   |      |      |       | 485A |         |       |         |
|---|------|------|-------|------|---------|-------|---------|
|   | 33   | 34   | :     | 35   | 38      | . :   | 39      |
|   | 2_   | 2    | 1     | 5    | 2       | 3     | 4       |
|   | 7–19 | 7889 | 21–31 | 4862 | 104-119 | 47–57 | 105-115 |
| 7 | 4,2  | 3,3  | 3,7   | 4,0  | 3,8     | 4,0   | 3,8     |
|   | -    | -    | _     | _    | 13      | -     | -       |
|   | 5,2  | 4,4  | 4,1   | 3,9  | 4,1     | 4,7   | 5,4     |
|   | 2,2  | 1,6  | 1,8   | 1,7  | 1,9     | 1,7   | 1,7     |
|   | _    | -    | _     | _    | 0,66    | _     | -       |
|   | 4,6  | 3,2  | 4,6   | 4,1  | 3,0     | 5,6   | 3,7     |
|   | 1.22 | 0.77 | 0,81  | 0,69 | 0,76    | 1,0   | 0,83    |

нопироксен. Таким образом, можно предположить, что базальты Калифорнийского залива образовались в результате селективного плавления плагиоклазсодержащего лерцолита. При этом в селективное, плавление вовлекался главным образом клинопироксен. возможно, с добавлением небольшого по объему количества плагиоклаза. Вариации в составах первичных выплавок на участках различных станций определялись степенью селективности плавления и соотношением объемов клинопироксена и плагиоклаза. вовлекаемых в плавление, а не различиями в составе мантийного субстрата.

\* \* \*

Итак, среди вулканических пород, поднятых в результате бурения в 65-м рейсе, распространены два структурных типа: пиллоу-базальты и массивные раскристаллизованные базальты. В обоих типах встречаются афировые и слабопорфировые плагиоклазовые и плагиоклаз-оливиновые разности. В объемном отношении незначительно преобладают афировые породы. По химическому составу все изученные базальты относятся к типу абиссальных океанических толеитов со слабо проявленным феннеровским трендом дифференциации с накоплением железа. Установлены незначительные вариации в химизме базальтов, поднятых на различных станциях в Калифорнийском заливе. Эти вариации состава базальтов являются следствием различной степени селективности первично-



Рис. 61. Вариационные диаграммы нормированных отношений концентраций редкоземельных элементов в базальтах (C<sub>TRB</sub>) различных скважин к концентрациям этих элементов в других породах и минералах (C<sub>TRN</sub>)

A - скв. 482; Б - скв. 483; В - скв. 485

C<sub>TRN</sub>: / − в абиссальном океаническом толеите (среднее), // – в клинопироксене, /// – в лерцолите, // − в силикатной фезе хондрита, V – в плагиоклазе. Величина C<sub>TRN</sub> заимствована из работы Ю.А. Балашова [1976]

Г- распределение суммы La, Sm, Eu, Yb и Lu в базальтах: a - скв. 482, б - скв. 483, e - скв. 485

го расплава, а не результатом его кристаллизационной дифференции. Выплавление первичных расплавов проходило при средних давлениях, отвечающих малым глубинам заложения магматического очага, не превышающим 25—30 км. Постулируется, что мантийным субстратом, из которого выплавлялись базальты, служил плагиоклазовый лерцолит. Характер распределения редкоземельных элементов в изученных базальтах не противоречит сделанным выводам.

# МИНЕРАЛОГИЯ И ГЕОХИМИЯ Гидротермальных отложений Зоны галапагосского рифта (рейс 70-й)

# ГИДРОТЕРМАЛЬНЫЕ ОТЛОЖЕНИЯ ЗОНЫ Галапагосского рифта: Аспекты Минералогии и геохимии главных компонентов

Гидротермальные отложения, развитые в районе Галапагосского центра спрединга и области гидротермальных холмов, в течение последнего десятилетия привлекают внимание специалистов, изучающих вопросы геологии океана [Corliss et al., 1978; Klinkhammer et al., 1977; Lonsdale, 1977; и др.]. Исследования, выполненные по программе 54-го рейса "Гломара Челленджера", в значительной мере позволили уточнить природу гидротермальных отложений и процессы их образования [Donnelly, 1980; Dymond et al., 1980; Hekinian et al., 1980; Hoffert et al., 1980; Humphris, Hallman, 1980; Schrader et al., 1980; и др.].

Использование гидравлических поршневых трубок при бурении скважин в ходе 70-го рейса дало возможность получить ненарушенные образцы осадков, представляющих в основном непрерывные стратиграфические разрезы как гидротермальных холмов, так и участков, отдаленных от зон гидротермальной активности. Ниже дается уточненная характеристика минерального состава гидротермальных осадков, по данным рентгеноструктурного анализа, электронографии, изучения под просвечивающим и сканирующим электронными микроскопами, вскрываются геохимические особенности поведения главных компонентов, а также Ва и Sr как индикаторных элементов гидротермальных процессов, оценивается влияние гидротермальных явлений на процессы седиментации.

# МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Изучались образцы кернов 70-го рейса "Гломара Челленджера", которые были любезно предоставлены А.А. Мигдисовым (Институт геохимии АН СССР), участником этого рейса.

Все имеющиеся в нашем распоряжении образцы были изучены в шлифах под микроскопом. По результатам этого изучения отбирались образцы для рентгеновского дифрактометрического и других физических методов исследования. Рентгеновский анализ проводился на дифрактометре ДРОН-2 (СССР) при СоК<sub>а-</sub> и СиК<sub>а-</sub>излучении при напряжении 35 кВ и силе тока 20 мА. Скорость сканирования обычно составляла 2°/мин. Дифрактограммы были получены для образцов: 1) природных: воздушно-сухих, 2) насыщенных глицерином и этиленгликолем, 3) прокаленных при 550°С. Для прецизионного определения положения рефлекса 060 проводилась съемка неориентированных препаратов при скорости 1°/мин. Интерпретация природы глинистых смешаннослойных образований, определение количественных соотношений разнотипных слоев и особенностей их чередования выполнялись на основе сопоставления экспериментальных данных с дифрактограммами, рассчитанными для соответствующих моделей [Дриц, Сахаров, 1976]. Для уточнения структурной упорядоченности представительные образцы изучались электронографическим методом косых текстур, который является чрезвычайно информативным при исследовании слоистых силикатов [Звягин,1964]. Исследования проводились на электронографе ЭР-100 при ускоряющем напряжении 100 кВ. Для всех изучавшихся образцов были сняты инфракрасные спектры в полосе 400—

### Таблица 33

#### Сопоставление содержаний химических компонентов в некоторых международных геохимических стандартах и результатов определений, выполненных в лаборатории :ГИН АН СССР матодом плазменной спектроскопии (вес. %, воздушно-сухая навеска)

|                                | Стандарт [Abbey, 1980] |       |       |          |       |              |       |       |  |  |  |  |
|--------------------------------|------------------------|-------|-------|----------|-------|--------------|-------|-------|--|--|--|--|
| Компонент                      | BX                     | -N    | Mic   | a-Fe     | В     | R            | Mica  | -Mg   |  |  |  |  |
|                                | 1                      | 2     | 1     | 2        | 1     | 2            | 1     | 2     |  |  |  |  |
| SiO,                           | 7,39                   | 7,43  | 34,50 | 35,04    | 38,39 | 7 7<br>38,59 | 38,42 | 38,41 |  |  |  |  |
| TiO,                           | 2,41                   | 2,11  | 2,51  | 2,52     | 2,61  | 2,47         | 1,635 | 1,68  |  |  |  |  |
| Al <sub>2</sub> Ŏ <sub>3</sub> | 54,53                  | 54,71 | 19,58 | 19,57    | 10,25 | 10,01        | 15,45 | 14,98 |  |  |  |  |
| Fe, O,                         | 23,27                  | 23,64 | 25,86 | 25,72    | 12,95 | 13,02        | 9,43  | 9,46  |  |  |  |  |
| MnO                            | 0,05                   | 0,07  | 0,35  | 0,34     | 0,20  | 0,24         | 0,26  | 0,24  |  |  |  |  |
| MgO                            | 0,11                   | 0,06  | 4,61  | 4,86     | 13,35 | 13,58        | 20,46 | 20,85 |  |  |  |  |
| CaO                            | 0,17                   | 0,12  | 0,43  | 0,39     | 13,87 | 14,08        | 0,08  | _     |  |  |  |  |
| Na <sub>2</sub> O              | 0,06                   | 0,05  | 0,301 | 0,28     | 3,07  | 3,07         | 0,12  | 0,18  |  |  |  |  |
| к, О                           | 0,07                   | 0,11  | 8,79  | 8,85     | 1,41  | 1,36         | 10,03 | 9,88  |  |  |  |  |
| P, O.                          | 0,13                   | 0,11  | 0,45  | 0,40     | 1,05  | 1.04         | 0.01  |       |  |  |  |  |
| BaO                            | 0,003                  | _     | 0,02  | <u> </u> | 0,112 | 0,098        | _     | -     |  |  |  |  |

Примечание. 1 – принятое содержание компонента в стандарте; 2 – результат определения в лаборатории.

4000 см<sup>-1</sup>. Наиболее представительные разности образцов исследовались под сканирующим (Stereoscan-600, Cambridge) и просвечивающим электронными микроскопами. Глинистые минералы определялись в соответствии с рекомендациями Международного комитета по номенклатуре глинистых минералов [Bailey et al., 1979; Buckley et al., 1978].

Химический состав осадков определялся в химико-атлантической лаборатории ГИН АН СССР с применением плазменного спектроанализатора JY-48 (фирма "Joben Yvon", Франция) из навески 0,1 г. В ходе определений одновременно оценивались содержания компонентов, показанные в табл. 33. В некоторых образцах методами классического химического анализа для контроля суммы определялись H<sub>2</sub>O<sup>+</sup>, H<sub>2</sub>O<sup>-</sup>, CO<sub>2</sub>, С<sub>орг</sub>, а также FeO. Ряд образцов контролировался на содержание CI, S, J и некоторых микроэлементов методом рентгено-флюоресцентной спектрометрии с энергодисперсионным детектором на приборе MECCA-1044A (фирма "Link Systems", Великобритания). Приготовление исходных растворов производилось по методике, близкой к описанной в работе Дж. Уолша [Walsh, 1980].

Проводимые определения контролировались путем многократного измерения 22 международных стандартных образцов [Abbey, 1980] (см. табл. 33), выполненных по специально составленному алгоритму и внесенных в память компьютера в форме системы уравнений. Последние описывают зависимость сигналов от концентраций измеряемых элементов, что позволяет получить информацию в виде процентного содержания окислов. Полученные результаты сравнивались с данными классических методов мокрой химии. В пределах областей концентраций, описываемых системами полученных уравнений, отклонение от результатов классического анализа не превышало двух допустимых среднеквадратичных отклонений для данного диапазона концентраций [Беренштейн и др., 1979].

### РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Гидротермальные отложения и карбонатно-кремнистые осадки характеризуются относительно ограниченным набором минеральных разностей. Это позволило сконцентрировать основное внимание на изучение опорных, типовых разрезов скважин, отличающихся относительно полным отбором ненарушенного керна (скв. 509В); данные по другим скважинам приводятся в относительно краткой форме.

|       |       |       | Станд | арт [Abbe | γ, 1980] |       |       |       |          |
|-------|-------|-------|-------|-----------|----------|-------|-------|-------|----------|
| UE    | 3-N   | DR    | -N    |           | 3A 🛛     | GH    |       | DT-N  |          |
| 1     | 2     | 1     | 2     | 1         | 2        | 1     | 2     | 1     | 2        |
| 39,93 | 39,74 | 52,88 | 53,18 | 69,96     | 70,07    | 75,85 | 75,31 | 36,52 | 36,65    |
| 0,12  | 0,108 | 1,10  | 1,04  | 0,38      | 0,40     | 0,08  | 0,085 | 1,40  | 1,28     |
| 2.97  | 2,93  | 17.56 | 17,64 | 14,51     | 15,14    | 12,51 | 12,57 | 59,21 | 59,02    |
| 8,46  | 8,53  | 9,69  | 9,81  | 2,83      | 2,69     | 1,34  | 1,37  | 0,66  | 0,60     |
| 0,12  | 0,095 | 0,21  | 0,23  | 0,09      |          | 0,05  | 0,051 | 0,008 | 0,004    |
| 35,99 | 35,88 | 4,47  | 4,39  | 0,95      | 1,01     | 0,03  | 0,12  | 0,04  | 0,11     |
| 1,185 | 1,15  | 7.09  | 7,07  | 2,45      | 2,448    | 0,69  | 0,70  | 0,04  | _        |
| 0,1   | 0,105 | 3,00  | 2,98  | 3,55      | -        | 3,85  |       | 0,04  | 0,04     |
| 0,02  | _     | 1,73  | 1,69  | 4,03      | _        | 4,76  | -     | 0,12  | 0,15     |
| 0,03  | 0,04  | 0,25  | 0,26  | 0,12      | 0,08     | 0,01  | -     | 0,09  | 0,20     |
| _     | _     | 0,042 | 0,047 | 0,10      | 0,109    | _     | _     |       | <u> </u> |

Скважина 509В (табл. 34; рис. 62-69)

Минералогия. Скв. 509В располагается на вершине гидротермального холма (см. рис. 62, врезка), где глубина воды составляет 2702 м, и вскрывает толщу гидротермальных осадков, а также фораминиферово-наннофоссилиевых илов (33,4 м). Характерной особенностью разреза скважины является развитие в его верхней части гидротермальных отложений, преимущественно зеленых глин, в меньшей мере — гидроокислов Mn.

Подчеркнем важнейшие особенности минерального состава осадков по интервалам, которые могут рассматриваться в общем контексте информации по литологии.

•*Обр. 1—2--65—67* (гидроокислы Mn). Фрагменты корок гидроокислов Mn, развитых в интервале 1,24—2,7 м, представлены тодорокитом (бузеритом) (см. табл. 34 и рис. 67), сравнительно слабо раскристаллизованные [Frenzel, 1980; Giovanoli, 1980]. Характерна незначительная примесь изотропного глинисто-кремнистого вещества. Для выделений тодорокита (бузерита) характерна сгустковидно-глобулярная структура с признаками раскристаллизации (табл. I)<sup>1</sup>.

Обр. 2—1—52—54 (зеленовато-оливковая гидротермальная глина). В мелкочешуйчатой, неравномерно раскристаллизованной анизотропной глинистой массе выделяются участки относительно хорошей раскристаллизации в мелкочешуйчатые агрегаты.

По данным рентгеновского анализа, основной фазой в образце является тонкодисперсный смешаннослойный минерал слюда-смектит с небольшой примесью кальцита и галита. На дифрактограмме природного образца (см. рис. 63) регистрируются сравнительно широкие базальные отражения от смешаннослойного минерала с d = 12,0; 4,86 и 3,26 Å. После обработки глицерином в области малых углов наблюдаются отражения с d = 18,2 и 9,71 Å, а для больших углов — широкий рефлекс с d = 3,48 Å. После насыщения образца этиленгликолем фиксируются рефлексы с d = 18,5; 9,7 и 3,35 Å. Прокаливание препарата при  $t = 550^{\circ}$ С приводит к появлению типичной дифрактограммы гидрослюды или обезвоженного смектита с d в области 10,0; 4,96 и 3,26 Å.

Для установления содержания и характера чередования слоев разных типов в исследуемой фазе было проведено сопоставление экспериментальных дифрактограмм образцов, насыщенных глицерином и этиленгликолем, с дифрактограммами, рассчитанными для соответствующих моделей смешаннослойных структур слюда-смектит [Дриц, Саха-

<sup>&</sup>lt;sup>1</sup> Табл. I-VIII см. на вкл.

Таблица 34 Химический состав верхнекайнозойских отложений скв. 5098 (вес. % в пересчете на воздушно-сухую навеску)

| № обр       | \$iO₂ | TiO2  | Al <sub>2</sub> O <sub>3</sub> | .Fe <sub>3</sub> .O <sub>3</sub> | MinO |
|-------------|-------|-------|--------------------------------|----------------------------------|------|
| 1-1-65-67   | 15,61 | 0,10  | 3,05                           | 1,95                             | 6,90 |
| 1-2-65-67   | 1,74  | 0,03  | 1,35                           | 0,61                             | 61,4 |
| 2-1-52-54   | 43,24 | 0,01  | 0,48                           | 28,25                            | 0,60 |
| 2-2-57-59   | 43,86 | 0,02  | 0,58                           | 28,76                            | 0,12 |
| 2-3-80-82   | 15,18 | 0,14  | 3,72                           | 1,72                             | 0,78 |
| 3-1-58-60   | 29,30 | 0,04  | 1,37                           | 18,81                            | 7,90 |
| 3-2-129-131 | 45,07 | 0,28  | 6,67                           | 17,62                            | 0,32 |
| 3-3-27-29   | 46,40 | 0,02  | 0,56                           | 28,01                            | 0,11 |
| 4-1-103-105 | 48,21 | 0,004 | 0,30                           | 29,19                            | 0,03 |
| 4-2-23-25   | 48,42 | 0,02  | 0,59                           | 28,22                            | 0,04 |
| 4-3-18-20   | 44,94 | 0,02  | 0,61                           | 30,82                            | 0,06 |
| 5-1-68-70   | 13,47 | 0,10  | 3,02                           | 1,64                             | 0,83 |
| 52-6567     | 7,99  | 0,08  | 2,47                           | 1,41                             | 0,85 |
| 5-3-23-25   | 15,10 | 0,08  | 2,54                           | 5,72                             | 1,74 |
| 6-1-68-70   | 8,35  | 0,09  | 2,69                           | 2,46                             | 0,45 |
| 6-2-51-53   | 7,91  | 0,15  | 2,76                           | 1,77                             | 0,39 |
| 6-3-68-70   | 8,07  | 0,07  | 2,31                           | 2,03                             | 0,37 |
| 7-1-80-82   | 5,66  | 0,06  | 2,19                           | 1,02                             | 0,41 |
| 7–2–80–82   | 8,52  | 0,08  | 2,65                           | 1,50                             | 0,27 |
| 7–3–80–82   | 7,16  | 0,08  | 2,48                           | 1,21                             | 0,21 |
| 8-1-98-100  | 12,91 | 0,13  | 3,58                           | 2,43                             | 0,28 |
| 8-3-58-60   | 11,52 | 0,18  | 3,27                           | 2,58                             | 0,26 |

ров. 1976]. Наиболее близкими к экспериментальным оказались дифракционные картины, рассчитанные для модели с  $W_{\rm M}$  = 0,6;  $W_{\rm S}$  = 0,4;  $P_{\rm SS}$  = 0,6; S = 1 (где  $W_{\rm M}$  и  $W_{\rm S}$  – относительные содержания соответственно слюдистых и смектитовых слоев;  $P_{\rm SS}$  – вероятность нахождения смектитового слоя при условии, что он следует за слоем смектита; S – фактор ближнего порядка). Из анализа вероятностных коэффициентов следует, что в данной смешаннослойной структуре чередование слюдистого и смектитовых слоев характеризуется тенденцией к сегрегации однотипных слоев. Вместе с тем детальный анализ значений межплоскостных расстояний d на дифрактограммах, полученных для насыщенного и обезвоженного препаратов, показал, что данная фаза представлена весьма тонкими частицами, содержащими менее 20 элементарных 2:1 слоев. Об этом свидетельствует нецелочисленная серия базальных отражений с d = 10,0 и 3,29 Å на дифракционной картине образца, прогретого при 550°С, и широкое отражение с d = 18,2 Å на дифрактограмме образца, насыщенного глицерином (см. рис. 63) [Дриц, Сахаров, 1976].

Характерной особенностью распределения интенсивности отражений на дифрактограмме обезвоженного образца является наличие очень слабого рефлекса с *d* в области 4,96 Å, что свидетельствует о высоком содержании катионов Fe в октаэдрах 2:1 слоев (см. рис. 63).

На кривых ИК-спектров наблюдается сравнительно широкая полоса поглощения в области от 3530 до 3550 см<sup>-1</sup>, что не противоречит высокожелезистому составу 2:1 слоев (см. рис. 66).

Обр. 2-2-57-59 (зеленая гидротермальная глина). Слабо раскристаллизованная, почти изотропная глина обладает глобулярно-сгустковидным строением. Размеры глобулей — от 0,007—0,015 до 0,3 мм. Результаты рентгеноструктурного изучения этого образца (см. рис. 63) и сопоставления их с расчетными дифракционными картинами показали, что главным компонентом является тонкодисперсная высокожелезистая смешаннослойная фаза слюда-смектит с  $W_{\rm M}$ :  $W_{\rm S}$  = 0,5 : 0,5 и S = 0. Таким образом, в исследуемом образце слюдистые и смектитовые слои чередуются в полном беспорядке. В качестве примеси отмечаются небольшие количества галита. ИК-спектр в области валентных колебаний 3500—3600 см<sup>-1</sup> близок к спектру обр. 2—1—52—54 (см. рис. 66).

*Обр. 2—3—80—82.* В радиоляриево (50%) -диатомово (10%) -фораминиферово (20%) - 176

| MgO   | CaO   | P205   | Na <sub>3</sub> O | K, O | BeO   | SrO   |
|-------|-------|--------|-------------------|------|-------|-------|
| 1,35  | 25,78 | 0,09   | 5,07              | 0,50 | 0,259 | 0,105 |
| 3,58  | 1,07  | 0,05   | 2,96              | 0,99 | 0,406 | 0,060 |
| 2,95  | 1,51  | 0,02   | 2,36              | 2,03 | 0,026 | 0,004 |
| 3,13  | 0,35  | 0,00   | 3,00              | 1,48 | 0,065 | 0,005 |
| 1,16  | 34,48 | 0,03   | 3,14              | 0,49 | 0,268 | 0,136 |
| 2,98  | 6,45  | 0,07   | 2,57              | 1,69 | 0,184 | 0,036 |
| 4,35  | 3,21  | 0,26   | 5,76              | 2,07 | 0,603 | 0,037 |
| 3,55  | 0,22  | 0,04   | 2,18              | 3,41 | 0,049 | 0,005 |
| 3,68  | 0,04  | 0,03   | 1,80              | 3,61 | Нет   | 0,003 |
| 3,79  | 0,00  | 0,0001 | 2,78              | 2,83 | 0,029 | 0,003 |
| 3,66  | 0,50  | 0,03   | 2,72              | 2,87 | 0,086 | 0,006 |
| 1,35  | 39,69 | 0,03   | 2,99              | 0,42 | 0,268 | 0,126 |
| 0,86  | 43,16 | 0,05   | 2,22              | 0,30 | 0,289 | 0,153 |
| 1,91  | 33,42 | 0,08   | 2,30              | 0,76 | 0,261 | 0,109 |
| 1,32, | 42,31 | 0,02   | 2,52              | 0,37 | 0,171 | 0,137 |
| 0,90  | 45,11 | 0,06   | 2,11              | 0,31 | 0,176 | 0,152 |
| 1,33  | 41,72 | 0,00   | 2,43              | 0,33 | 0,179 | 0,134 |
| 0,75  | 50,10 | 0,02   | 1,67              | 0,24 | 0,144 | 0,149 |
| 0,83  | 44,93 | 0,05   | 2,05              | 0,40 | 0,190 | 0,136 |
| 0,83  | 47,92 | 0,03   | 2,14              | 0,30 | 0,190 | 0,129 |
| 1,43  | 37,70 | 0,05   | 3,04              | 0,59 | 0,283 | 0,115 |
| 1,58  | 40,97 | 0,05   | 3,17              | 0.45 | 0.252 | 0,118 |

нанномикритовом (60%) илу наблюдаются редкие выделения зеленоватой глобулярной глины, близкой к гидротермальной.

Обр. 3—1—58—60. Наблюдаются фрагменты корок гидроокислов Mn; основная масса представлена гидроокислами Mn колломорфно-глобулярного строения. Размеры глобулей 0,015—0,04 мм, их агрегатов — до 0,4 мм. Присутствует примесь кремнисто-глинистого материала (20%). Гидроокислы Mn, по данным рентгеноструктурного анализа (см. рис. 67), представлены тодорокитом (бузеритом) с примесью кальцита, отмечаются следы остаточного галита (см. табл. 34 и рис. 67; табл. II, III).

Обр. 3-2-129-131. Зеленый (до зеленовато-оливкового) гидротермальный осадок сложен глобулями (0,04-0,07 мм) и их агрегатами (до 0,4 мм). Наблюдаются участки раскристаллизации с тонкочешуйчатыми выделениями. Отмечаются сгустковые выделения, сложенные бледно-зеленым глинистым веществом, содержащим агрегаты цеолита и полевых шпатов. По данным рентгеновской дифрактометрии (см. рис. 64 и 66), глинистое вещество представлено смешаннослойной неупорядоченной фазой со слоями Fe-слюды и Fe-смектита, присутствующими в пропорции 0,8:0,2 (S = 0). Характерна малая примесь цеолита (типа дефектного филлипсита), полевых шпатов, следов остаточного галита.

Обр. 3-3-27-29. В зеленом гидротермальном глинистом осадке примечательны замещенные глинистые материалом реликты остатков радиолярий и диатомей. В зонах замещения зеленое глинистое вещество существенно более светлое. В целом основная глинистая масса почти не раскристаллизована, изотропна, со слабо выраженной глобулярностью; наблюдаются редкие кристаллы филлипсита. По данным рентгеновской дифрактометрии (см. рис. 64 и 66), глина представлена неупорядоченной высокожелезистой смешаннослойной фазой слюда-смектит с соотношением  $W_{\rm M}$ :  $W_{\rm S}$  = 0,75:0,25 (S = 0).

Обр. 4—1—103—105. Основная масса зеленой гидротермальной глины, относительно гомогенной, состоит из сферолитовых агрегатов, наблюдаемых лишь в поляризованном свете, размером от 0,007—0,04 до 0,15 мм. По отдельным прожилковидным участкам хорошо развиты изометрические кристаллиты напряжения (0,04 × 0,02 мм). По данным рентгеновской дифрактометрии, образец представлен высокожелезистой


Рис. 62. Распределение минеральных компонентов и величин отношений Fe/(Fe+Mg+AI), AI/(Fe+ +Mg + Al) и K/(Fe + Mg + Al) в резрезе позднекайнозойских отложений скв. 509В Литология (к рис. 62, 69-83) :

1 — фореминиферовые наннофоссилиевые илы; 2 — гидротермальные зеленые зернисто-глобулярные глины: а — крупноглобулярные, б — мелкоглобулярные; 3 — фрагменты корок, сложенных окислами марганца; 4 – диатомовые, радиоляриевые наннофоссилиевые илы; 5 – обломки безальта и породы базальтового основания; 6 — интервалы, где кери не отбирался; 7 — поверхностный окисленный слой. Минералы: 8 - тодорокит (бузерит), 9 - железистый слюдистый компонент (типа селадонита) смешаннослойной фазы (в скобках — относительное содержание, %), 10 — железистый диоктаздрисмешаннослойной фазой слюда-смектит с соотношением  $W_{M}: W_{S} = 0,8:0,2$  и со слабой тенденцией к сегрегации однотипных слоев ( $P_{SS} = 0,3; S = 1$ ). Особенности глобулярного строения и развитие новообразованных игольчатых кристаллов селадонита отчетливо видны в микрофотографиях, снятых под сканирующим микроскопом (габл. |V-V|).

(табл. 19-97). *Обр. 4-2-23-25.* Зеленая гидротермальная глина имеет неясное глобулярное строение, в поляризованном свете почти изотропна. Характерны реликты биоморфных осадков (20%): диатомовых и фораминифер, замещенных глинистым веществом; на этих же участках замещения раскристаллизация глинистого вещества относительно более высокая. По данным рентгеновской дифрактометрии (рис. 65, 66), образец весьма близок к обр. 4-1-103-105 (см. рис. 62).

Обр. 4-3-18-20. Олив ково-зеленая гидротермальная глина, крайне слабо раскристаллизованная. На отдельных участках наблюдаются редкие пятнистые выделения гётита как продукта относительно позднего изменения (5-7%). По данным рентгеновской дифрактометрии (см. рис. 65, 66), глина представлена смешаннослойной фазой с соотношением слюдистых и смектитовых слоев, равным 0,8:0,2 (S = 0). В осадке отмечаются следы кальцита и остаточного галита, филлипсита. Примечательно глобулярное строение с неясной слоистостью отдельных глобулей, их четкой раскристаллизацией в игольчато-волокнистые кристаллы селадонита (табл. IV-VIII).

Осадки более глубоких интервалов (до базальтового основания) представлены (см. рис. 62) илами фораминиферово (15%)-нанно (30%)-микритовыми (до 60%), глинистыми, с редкими остатками радиолярий и диатомовых, иногда с пятнистыми выделениями гидротермального глинистого вещества (обр. 5–1–68–70 и 5–3–23–25), с обломками бурого базальтового стекла (обр. 6–2–51–53 и 7–3–80–82), рассеянными гидроокислами Мл, в меньшей мере — Fe (обр. 6–3–68–70 и 7–1–80–82).

Полученные данные о минеральном составе зеленых гидротермальных глин уточнялись при помощи электронографического метода косых текстур. Исследовались три представительных образца (3-3-27-29, 4-1-103-105 и 4-3-18-20) скв. 509 В. Полученные электронограммы косых текстур (ЭКТ) характеризовались достаточно хорошо разрешенными пространственными отражениями (*hkl*) с индексами k = 3n(20l; 13l) на втором эллипсе и с  $k \neq 3n(02l, 11l)$  на первом эллипсе, что свидетельствует о наличии (в условиях вакуума) трехмерной упорядоченности исследуемых минералов (см. рис. 68). Расположение рефлексов и распределение интенсивности на ЭКТ всех образцов очень сходно с распределением интенсивностей отражений на ЭКТ селадонитовых и глауконитовых минералов [Звягин, 1964]. Геометрический анализ и оценка интенсивностей пространственных отражений позволили определить параметры элементарных ячеек минералов и установить, что исследованные разности можно охарактеризовать как политипную модификацию слюды IM (табл. 35).

Общим для всех ЭКТ (см. рис. 68) является то, что интенсивность отражения, расположенного на малой оси 6-го эллипса, значительно превышает интенсивность отражения, полученную для 7-го эллипса. Эти особенности свидетельствуют о высокой железистости минералов [Звягин, 1964]. Кроме того, на ЭКТ всех образцов интенсивность отражения 022 значительно слабее соответствующего отражения для ЭКТ селадонитов и глауконитов. Это свидетельствует о низком содержании межслоевых катионов в структуре исследуемых минералов [Ципурский и др., 1978]. Различный фон диффузного рассеяния, который в наименьшей мере проявляется для обр. 509В–3–3–27–29 (см. рис. 68), очевидно, связан с различной концентрацией дефектов упаковки 2:1 слоев. Образцы глин близкого минерального состава отмечались для гидротермальных осадков впадины Атлантис II в Красном море [Бутузова и др., 1979].

ческий смектит (типа нонтронита) как компонент смешаннослойной фазы; 11 — относительно хорошо окристализованные резности; 12 — кальцит; 13 — примесь цеолита (филлипсита); 14 — примесь кварца и опала СТ, 15 — величины отношений главных компонентов для (цифры в кружках): 1 — среднестатистического глауконита [Weaver, Pollard, 1973], 2 — селадонита, выполняющего минделины в базальте [Wise, Eugster, 1964], 3 — нонтронита — продукта изменения базальта [Kerr, 1950], 4 — среднестатистического монтмориллонита [Weaver, Pollard, 1973], 5 — среднестатистического иллита [Weaver, Pollard, 1973]. На врезке показано расположение скважин станции 509: 16 — цепь холмов и хребтовидных подиятий; 17 — главные разломы (амплитуда 20—30 м); 18 — скважины станции (509) (а), а также более ранней станции 424 (б)



Рис. 63. Дифрактограммы гидротермальных зеленых осадков скв. 509В

I — обр. 2—1—52—54, представленный относительно слабовыраженной гетерогенной фазой смешаннослойной природы: железистая селадонитоподобная слюда — железистый диоктаздрический смектит (60: 40); II — обр. 2—2—57—59, представленный гетерогенной фазой неупорядоченной смешанно-слойной природы: железистая селадонитоподобная слюда — железистый диоктаздрический смектит (нонтронит) (50: 50)

Состояние образца: а — воздушно-сухой, б — насыщенный глицерином, а — прокаленный при 550° С

Рис. 64. Дифрактограммы гидротермальных зеленых осадков скв. 509В

I — обр. 3–2–129–131, представленный существенно гетерогенной смесью смешаннослойной природы: железистая селадонитоподобная спюда — железистый диоктаэдрический смектит (нонтронит) (80:20). Характерна малая примесь филлипсита, следы кварца и полевых шпатов; II обр. 3–3–27–29, споженный существенно гетерогенной смесью смешанноспойной природы: железистая селадонитоподобная спюда — железистый диоктаэдрический смектит (70:30)

Состояние образца – см. на рис. 63

Рис. 65. Дифрактограммы гидротермальных зеленых осадков, скв. 509В, представленных относительно однородной гетерогенной смесью смешаннослойной природы: железистая селадонитоподобная слюда — железистый диоктаздрический смектит (80:20).

I — обр. 4-2-23-25, примечательна повышенная окристаллизованность и фазовая однородность; II — обр. 4-3-18-20, примечательна выраженная однородность

Состояние образца - см. на рис. 63



Рис. 66. Инфракрасные спектры природных образцов зеленых гидротермальных глин скв. 509В



Рис. 67. Дифрактограммы природных образцов корковидных образований, сложенных гидроокислами марганца, скв. 509В

I – обр. 1–2–65–67, представленный слабо раскристаллизованным тодорокитом (бузеритом); II – обр. 3–1–58–60, сложенный тодорокитом с незначительной примесью кальцита и галита

Данные химического анализа (см. табл. 34) были пересчитаны на усредненную кристаллохимическую формулу смешаннослойного минерала. При этом учитывалось наличие примесей кальцита, галита и других компонентов (табл. 36). По соотношению слюдистых и смектитовых слоев в смешаннослойных фазах все образцы можно разделить на две группы. Образцы, расположенные в верхней части разреза (обр. 2–1–52–54 и 2–2–57–59), характеризуются соотношением  $W_{\rm M}:W_{\rm S}$ , изменяющимся в пределах от 0,5:0,5 до 0,6:0,4, в то время как для образцов из нижней части разреза (обр. 3–3–27–29, 4–1–103–105 и 4–2–23–25) это соотношение меняется от 0,7:0,3 до 0,8:0,2. Отмеченное возрастание слюдистого компонента находит свое отражение в



Рис. 68. Электронограмма косой текстуры зеленой гидротермальной глины (обр. 509В-3-3-27-29)

Рис. 69. Распределение величин отношений Mn /Fe, Ba/Ti и Ba/Sr в разрезе позднекайнозойских отложений скв. 509В

Стрелками показаны величины отношений компонентов [Turekian, Wedepohl, 1961] (цифры в кружках) для: 1 — базальтов,

глубоководных известковых осадков;
глубоководных глинистых осадков;
Литология – см. на рис. 62

| Кврн | CENTURA | l'nybuna,  | Литало —<br>гия  | N= 06p.                | Mn/Fe<br>0,2 0,4 0,6          | Ba/Ti<br>2,0 4,0 6,0                          | Ba/Sr<br>4,0 8,0 12,0 16,0            |
|------|---------|------------|------------------|------------------------|-------------------------------|-----------------------------------------------|---------------------------------------|
| 1    | 1       | Ì          | + + +            | 1-1-65-67<br>1-2-65-67 | 3,93                          | × × × ×<br>× × × ×<br>× × × × 18,00 × ×       | *<br>* * * *                          |
|      | 1       |            | M M M            | 2-1-52-54              | !                             |                                               | * * *                                 |
| 2    | z       | 5          | • • • •          | 2-2-57-59              | 0,004                         | X X X X X<br>X X X X X X                      | * * * * * * * *                       |
| -    | 3       |            | <u> </u>         | 2-3-8082               | $\times \times \times \times$ | x                                             |                                       |
| ┢    | ŀ       |            | م <u>و اح</u> اح | 3-1-58-60              | $\boxtimes$                   | X                                             | * *                                   |
| 3    | 2       | 10         | +++/0            | 3-2-129-131            |                               | × × ×                                         | * * * * * * * *                       |
|      | 3       |            | • • • • •        | 3-3-27-29              | 0,004                         | ж ж ж<br>ж ж ж                                | * * * *                               |
| Γ    | 1       | 1          |                  | 4-1-103-105            | 0,013                         |                                               |                                       |
| 4    | 2       |            | • • • •          | 4-2-23-25              | 0,001                         | X X<br>X X                                    | * * *                                 |
|      | 3       | <b>[</b> ] | °, °, °, °,      | 4-3-18-20              | 0,002                         | <u>× × × × × × × × × × × × × × × × × × × </u> | * * * * *                             |
| Г    | •       |            |                  | 5-1-68-70              |                               | <u>x x</u>                                    | •                                     |
| 5    | 2       |            |                  | 5-2-6567               |                               | X X X X<br>X X X X                            |                                       |
|      | 3       | 20         |                  | 5-3-23-25              | KXXX                          | * * *                                         | •                                     |
| Γ    | ŀ       |            | +                | 6-1-68-70              | RI                            | ж ж<br>ж. ж                                   | •                                     |
| 6    | 2       |            | ++++             | 6-2-51-53              |                               | ж ж<br>ж                                      |                                       |
|      | 9       |            | ++++             | 6-3-68-70              | $\boxtimes$                   | A                                             |                                       |
| Γ    | ŀ       | Γ          | <b>*</b> * * *   | 7-1-80-82              |                               | X X X<br>X X                                  |                                       |
| 17   | Ł       |            | ++++             | 7.2-80-82              | ×                             | x x x                                         | •                                     |
|      | ŀ       |            | + + -            | 7-3-80-82              |                               | K K X                                         |                                       |
|      | ŀ       | 30         | + + +            | 8-1-98-100             |                               |                                               | • •                                   |
| 8    | þ       |            |                  |                        |                               | 2 - 1                                         | · · · · · · · · · · · · · · · · · · · |
| L    | 1       |            |                  | 1 8-3-08-60            |                               |                                               |                                       |
|      |         |            |                  | () * 0.0               | 0,10 J                        | 0,25 (2) 0,0                                  | 2 2 12,78                             |



Рис. 70. Распределение минеральных компонентов и величин отношений Fe/(Fe+Mg+AI) и AI/(Fe+ +Mg+AI) в разрезе позднекайнозойских отложений скв. 507D

Условные обозначения см. на рис. 62

том, что вниз по разрезу наблюдается уменьшение величины d<sub>001</sub> природных образцов от 12,3 до 10,7 Å и увеличение содержания катионов K<sup>+</sup> (в пересчете на половину элементарной ячейки) от 0,16 до 0,37 с параллельным уменьшением межслоевых катионов Mg. Таким образом, вниз по разрезу наблюдается развитие процесса слюдизации исходного глинистого вещества.

Для выяснения природы слюдистой фазы конечного продукта такого преобразования рассмотрим более детально совокупность кристаллохимических и структурных характеристик изученных образцов. Прежде всего обращает на себя внимание высокая степень железистости и практическое отсутствие AI во всех образцах. Можно видеть (см. табл. 36), что для образцов из верхней части раздела отрицательный заряд 2:1 слоев примерно поровну распределен между октаздрическими и тетраэдрическими сетками,

#### Таблица 35

Параметры элемектарных ячеек образцов мономинеральных компонентов заленых гидротермальных глин скв. 509В

| № обр.      | a, A | <i>b,</i> A | c, A  | β,°   | c∙sinβ, Å |
|-------------|------|-------------|-------|-------|-----------|
| 3-3-27-29   | 5,24 | 9,08        | 10,12 | 100,6 | 9,95      |
| 4-1-103-105 | 5,24 | 9,08        | 10,15 | 100,4 | 9,98      |
| 4-3-18-20   | 5,24 | 9,08        | 10,12 | 100,5 | 9,95      |

в то время как в образцах из нижней части разреза он преимущественно локализован в октаэдрах за счет замещения Fe<sup>3+</sup> на Mg. Характерной особенностью исследованных смешаннослойных минералов является низкое замещение в тетраэдрах Si преимущественно на Fe<sup>3+</sup> и в меньшей степени на Al. При переходе от образцов верхней-части разреза к ним эта величина уменьшается от 0,20 до 0,12. Параллельно наблюдается уменьшение Fe<sup>3+</sup> от 1,73 до 0,64 и увеличение Mg от 0,27 до 0,37 в октаэдрах 2:1 слоев.

Если получить усредненные кристаллохимические формулы для образцов из верхней и нижней частей разреза соответственно (см. табл. 36), то с их помощью легко рассчитать приближенные формулы раздельно для слюдистых и смектитовых слоев (см. табл. 36). Анализ этих формул свидетельствует, что слюдистый компонент по составу близок к селадониту, поскольку в тетраэдрах практически отсутствует замещение Si на (A1, Fe), а весь отрицательный заряд 2:1 слоя локализован в октаздрах за счет замещения Fe<sup>3+</sup> на Mg. Однако такие слюдистые слои еще не являются истинно селадонитовыми, поскольку в их октаэдрах содержится значительное количество Fe<sup>3+</sup> (1,60), а межслои имеют пониженное число катионов K (0,45). В то же время структурная формула смектитовых слоев близка к нонтрониту, так как общий отрицательный заряд 2:1 пакетов обусловлен как изоморфными замещениями Fe<sup>3+</sup> на Mg в октаэдрах, так и значительным содержанием трехвалентных катионов Fe<sup>3+</sup> и A1 в тетраэдрах. Сучетом этого становится понятными результаты прецизионного измерения положения рефлекса

#### Таблица 36

Результаты структурного

и кристаллохимического изучения образцов зеленых глин скв. 509В

| № n/n                                        | № рбр.                          | <i>W</i> <sub>m</sub> : <i>W</i> <sub>s</sub> | Структурная формула, рассчитанная на анионный состав О $_{10}$ (ОН) $_2$                                                                                                               |   |
|----------------------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1 2-1                                        | 5254                            | 0,60:0,40                                     | (Si <sub>3,81</sub> Al <sub>0,05</sub> Fe <sup>3+</sup> <sub>0,14</sub> )(Fe <sup>3+</sup> <sub>1,73</sub> Mg <sub>0,27</sub> )Mg <sub>0,12</sub> K <sub>0,23</sub>                    | - |
| 2 2-2                                        | -57-59                          | 0,50:0,50                                     | (Si <sub>3,80</sub> Al <sub>0,06</sub> Fe <sup>3+</sup> <sub>0,14</sub> )(Fe <sup>3+</sup> <sub>1,72</sub> Mg <sub>0,28</sub> )Mg <sub>0,18</sub> K <sub>0,16</sub> Ca <sub>0,03</sub> |   |
| Усреднен<br>метры дл                         | ные пара-<br>ня №1 и 2          | 0,55:0,45                                     | $(Si_{3,80}Al_{0,06}Fe_{0,14}^{+3})(Fe_{1,73}^{3+}Mg_{0,27})Mg_{0,13}K_{0,21}$                                                                                                         |   |
| 3 3-3-                                       | -2729                           | 0,75:0,25                                     | $(Si_{3,84}AI_{0,05}Fe_{0,11}^{3+})(Fe_{1,63}^{3+}Mg_{0,37})Mg_{0,07}K_{0,36}Ca_{0,02}$                                                                                                |   |
| 4 4-1-                                       | -104-105                        | 0,80:0,20                                     | $(Si_{3,65}Al_{0,03}Fe_{0,12}^{3+})(Fe_{1,63}^{+3}Mg_{0,37})Mg_{0,07}K_{0,37}$                                                                                                         |   |
| 5 4-2                                        | -23-25                          | 0,70:0,30                                     | $(Si_{s,s,s}Al_{0,0,6}Fe_{0,0,6}^{3+})(Fe_{1,6,4}^{3+}Mg_{0,3,6})Mg_{0,0,9}K_{0,2,9}$                                                                                                  |   |
| Усреднен<br>метры дл<br>и 5                  | ные пара-<br>ія № 3, 4          | 0,75:0,25                                     | (Si <sub>3 ,5 6</sub> Al <sub>0 ,0 5</sub> Fe <sup>3+</sup> <sub>0 ,0 9</sub> )(Fe <sup>3+</sup> <sub>1 ,6 3</sub> Mg <sub>0 ,3 7</sub> )Mg <sub>0 ,0 9</sub> K <sub>0 ,3 3</sub>      |   |
| Параметр<br>слюдисто<br>понента (<br>донита) | оы для<br>ОГО КОМ-<br>(села-    | 1:0                                           | [Si <sub>3,95</sub> (AI, Fe <sup>3+</sup> ) <sub>0,05</sub> ] (Fe <sup>3+</sup> ,60Mg <sub>0,40</sub> )K <sub>0,45</sub>                                                               |   |
| Параметр<br>смектито<br>компоне<br>(нонтрон  | оы для<br>980го<br>нта<br>иита) | 0:1                                           | [Si <sub>3,60</sub> (AI, Fe <sup>3+</sup> ) <sub>0,40</sub> ] (Fe <sup>3+</sup> <sub>1,60</sub> Mg <sub>0,20</sub> )Mg <sub>0,30</sub>                                                 |   |

(060) для изученных образцов. Из табл. Зб прежде всего следует, что с ростом слюдистого компонента  $d_{060}$  изученных образцов уменьшается от 1,5166 до 1,5144 Å. Однако значение этого параметра существенно выше, чем у селадонита, для которого  $d_{060} \leq 1,510$  Å. Такое несоответствие обусловлено низким содержанием катионов К в слюдистых межслоях, высокой степенью железистости октаздров и замещением в тетраздрах Si преимущественно на Fe<sup>3+</sup>.

Важно еще раз подчеркнуть, что данные ЭКТ для образцов из нижней части разреза свидетельствуют о высокой степени трехмерной упорядоченности 2:1 слоев, характерной для истинных слюд политипной модификации IM.

Таким образом, детальный анализ всей совокупности структурно-кристаллических данных изученных образцов свидетельствует, что в разрезе наблюдается процесс селадонитизации за счет преобразования нонтронитового компонента. Этот процесс сопровождается привносом и фиксацией катионов К в разбухающих межслоях, выносом Fe<sup>3+</sup> из тетраэдров и октаэдров 2:1 слоев, вхождением Mg в октаэдрические позиции с параллельным повышением структурной упорядоченности минералов.

В составе зеленых гидротермальных глин главным компонентом является Fe<sup>3+</sup> при крайне низких, следовых количествах AI и весьма умеренных, постоянных — Mg. В относительно чистых разностях гидротермальных глин величина отношения Fe/(Fe + Mg + AI) составляет 0,8—0,9 (см. рис.62), что резко отличает их от глинистых компонентов карбонатных илов нижней половины разреза, в которых величины Fe/(Fe + Mg + AI) редко превышают 0,4. Различия между глинистыми компонентами гидротермальных сосадков и глинистых карбонатных илов особенно резко проявляются при сопоставлении величин отношения AI/(Fe + Mg + AI) в разрезе: в первых эта величина редко более 0,05, тогда как во вторых, как правило, около 0,3—0,5. Сопоставляя эти данные (см. рис. 62) с величинами отношений, вычисленными для типовых разностей монтмориллонита, иллита, селадонита, глауконита и нонтронита [Weaver, Pollard, 1973; Wise, Eugster, 1964; Kerr, 1950], можно заключить, что глинистые компоненты карбонатных илов нижней части разреза представлены слабожелезистым монтмориллонит-илли-

|   | Заря,           | д сеток        |                      |                      |             |
|---|-----------------|----------------|----------------------|----------------------|-------------|
| _ | тетраздрический | октаэдрический | d <sub>001</sub> , A | d <sub>060</sub> , A | <i>b,</i> A |
|   | 0,19            | 0,27           | 12,0                 | 1,5163               | 9.098       |
|   | 0,20            | 0,28           | 12,3                 | 1,5166               | 9,100       |
|   | 0,20            | 0,27           | -                    | _                    | _           |
|   | 0,16            | 0,37           | 10,9                 | 1.5146               | 9.088       |
|   | 0,15            | 0,37           | 10,7                 | 1.5148               | 9,089       |
|   | 0,12            | 0,36           | 11,2                 | 1,5144               | 9,086       |
|   | 0,14            | 0,37           | -                    | -                    | _           |
|   | 0,05            | 0,40           | -                    | -                    | -           |
|   | 0, 40           | 0,20           | -                    | -                    | -           |

том. Отметим, что величины отношения K/(Fe + Mg + Al) в разрезе мало отклоняются от 0,1 (см. рис. 62), что не противоречит сделанным выводам.

Аспекты геохимии. Характерной геохимической чертой рассматриваемых гидротермальных осадков является выраженное разделение Мп и Fe в их главных типах. В зеленых глинах, концентрирующих основную часть Fe, практически не аккумулируется Mn, тогда как в корковидных образованиях, сложенных гидроокислами Mn, отмечаются незначительные количества Fe (см. табл. 34). Эта особенность отчетливо видна в распределении величин отношения Mn/Fe в разрезе (см. рис. 69).

Интересно, что в нижней части разреза, сложенной фораминиферово-наннофоссилиевыми осадками, величины Mn/Fe заметно превышают значения, характерные для базальтов, карбонатных и глинистых осадков океана [Turekian, Wedepoh!, 1961]. Более того, наблюдается отчетливая тенденция роста величин Mn/Fe к верхам осадочной карбонатной пачки, что может быть интерпретировано как свидетельство нарастающей со временем относительно низкотемпературной гидротермальной активности в связи с активизацией данного разломного участка.

Этот вывод находит подтверждение в согласованном изменении величин Mn/Fe и Ba/Ti как характерного индикатора гидротермальной активности. Отметим, что значения отношения Ba/Ti как в гидротермальных отложениях, особенно в разностях, споженных гидроокислами Mn (обр. 1–2–65–67), так и в фораминиферово-наннофоссилиевых илах, существенно выше, чем в базальтах, океанских карбонатных и глинистых осадках (см. рис. 69) [Turekian, Wedepohl, 1961].

Величины Ba/Sr с определенностью позволяют разделить относительно высокотемпературные гидротермальные осадки, представленные зелеными глинами, и сравнительно низкотемпературные разности, сложенные гидроокислами Mn (см. рис. 69). Особенно четко различаются значения этого отношения для гидротермальных осадков в целом и для фораминиферово-наннофоссилиевых илов (см. рис. 69). Тем не менее последние характеризуются величинами Ba/Sr, примерно в 10–20 раз превышающими эту характеристику для глубоководных океанских карбонатных осадков [Turekian, Wedepoh], 1961], что свидетельствует о заметной гидротермальной активности данного участка во время биогенной карбонатной седиментации, предшествующей главному гидротермальному этапу.

### Скважина 507D (табл. 37; рис. 70, 71)

Скв. 507D располагается на гидротермальном холме (глубина океана в этой точке 2699 м) в пределах небольшого участка района гидротермальных холмов (1×2 км), на котором были исследованы также скв. 507 F и 507 H. Скважиной вскрыты 26-метровая пачка зеленых гидротермальных глин, в отдельных интервалах перемежающихся с кремнистыми фораминиферовыми наннофоссилиевыми илами, и нижняя 10-метровая пачка фораминиферовых наннофоссилиевых илов. Данные по литологии и строению разреза приведены в предварительном отчете о 70-м рейсе [Initial Reports..., 1983].

Минералогия. Гидротермальные осадки представлены преимущественно зелеными глобулярными глинами. По данным рентгеновской дифрактометрии и ИК-спектроскопии выделяются два типа таких глин. К первому принадлежат глины, сложенные непрерывным рядом высокожелезистых смешаннослойных фаз с различным содержанием слюдистых и смектитовых слоев. Особенностью рентгеновских дифрактограмм глин этого типа является слабая выраженность дифракционных максимумов, их платообразный характер, что не позволяет оценить соотношения разных слоев (обр. 2–1–30–32, 6–2–43–45, 7–3–131–135 и 8–1–77–79). Второй тип представлен смешаннослойной фазой Fe-слюда-Fe-смектит с соотношением 0,7:0,3 и с неупорядоченным чередованием (обр. 3–1–80–82, 3–3–21–23, 4–2–45–47 и 5–3–28–30; см. рис. 70). Особо выделяется обр. 4–1–62–64, в котором отчетливо наблюдается тенденция к сегрегации слоев разных типов.

При рассмотрении распределения отношения Fe/(Fe + Mg + Al) в разрезе обращает на себя внимание то, что в нижней части пачки гидротермальных осадков (обр. 6-2-43-45 и ниже), где преобладают зеленые глины первого типа, величина данного отношения не превышает 0,8, тогда как для смешаннослойных фаз с относительной сегрегированностью селадонитовых и нонтронитовых слоев данный показатель превышает 0,85, достигая 0,9 (см. рис. 70 и табл. 37). На основе изучения этих осадков под микроскопом можно утверждать, что снижение железистости зеленых глин связано

| _    |        | -         |                                         |                |                        |                      |                                       |
|------|--------|-----------|-----------------------------------------|----------------|------------------------|----------------------|---------------------------------------|
| Керн | KhhX13 | L'nybura, | Литала-<br>гил                          | № обр.         | Mn/Fe<br>q.z 0,4 9,6   | Ba/Ti<br>2,0 4,0 6,0 | Ba/Sr<br>4,0 8,0 12,0                 |
| ┢    | Н      |           | i i carrier a l'indea                   |                | XXXXX XX               | x x x x x x . x      |                                       |
| Բ    | ŀ      |           |                                         | 1.1-39-41      | 001                    |                      | · · · · · · · · · · · · · · · · · · · |
| Ι,   | Ļ      |           | ••••••                                  |                | 1                      |                      | 8                                     |
| ľ    | Ē      | ł         |                                         | 2-2-30-32      |                        | 8 X K                |                                       |
|      | ۲      | 5         | •••••                                   |                |                        |                      | •                                     |
|      | •      |           |                                         | 3-1-80-82      | 0,005                  |                      | Sr (0,00%)                            |
| 3    | 2      | 1         |                                         | 3-2-85-87      | 0,03                   |                      |                                       |
|      | 3      | ł         |                                         | 3-3-21-23      | 0,001                  | * * * * * * *        |                                       |
|      | 1      | 10        |                                         | 4-1-62-64      | 0,001                  | 0,0                  | 1                                     |
| 4    | 2      |           |                                         | 4-2-45-47      | 0,002                  | X                    | * - * \$ 20,0 }*                      |
|      | 3      | ł         | হ হা                                    | 4-3-49-51      | 0,002                  |                      | # 20,0 }#                             |
| ┢    | ħ      | 15        |                                         | 5-1-78-80      | 0,01                   | x x                  | 70,0                                  |
| 5    | 2      |           |                                         | 5-2-8284       |                        | K                    |                                       |
|      | 3      |           | +++++                                   | 5-3-28-30      | 0,001                  | # # X                |                                       |
|      | 1      |           |                                         | 6-1-12-14      | 0,002                  | * * * * *            |                                       |
| 6    | 2      | 20        |                                         | 6-2-43-45      | 0,01                   |                      |                                       |
|      | 3      |           | • • • • •<br>• • • • •                  | 6-3101-10      | 3                      |                      |                                       |
| Γ    | ŀ      |           | · · · · · · · · · · · · · · · · · · ·   | 7-1-8486       |                        |                      |                                       |
| 1,   | 2      | 25        | + + +                                   | 7-2-134-13     | 6 0,01                 |                      | 0,13                                  |
|      | 3      |           | °°°°°+                                  | 7-3-131-13     | 3 0,01                 |                      | 0,10                                  |
|      | ŀ      |           |                                         | 8-1-77-79      | 0,01                   | *                    | 0,13                                  |
| 8    | 6      | 30        |                                         | 8-2-57-59      | 8                      |                      |                                       |
| L    | 3      |           | + + + + +                               | 8-3-107-10     | 9                      |                      | *                                     |
|      | ŀ      |           | + + + +                                 | 9-1-70-73      |                        |                      |                                       |
| 9    | 2      |           | +++++++++++++++++++++++++++++++++++++++ | 9-2-70-73      |                        |                      |                                       |
| L    | 3      | 35        | +_+_+                                   | 9-3-70-73      |                        | · ·                  |                                       |
|      | ŀ      |           |                                         | 10-1-95-98     |                        |                      |                                       |
| 10   | 2      | ļ         | يتسبيتها                                | A . A          |                        |                      |                                       |
|      | ß      |           |                                         | 0,00 شىرىسىكىس | 2 0,113 (7 0,0<br>0,10 | 0,50 ③ ② 0,0         | 9 0,71 () 3 12,7                      |
|      |        |           |                                         |                | , <b>O</b>             | 2                    |                                       |

Рис. 71. Распределение величин отношений Mn/Fe, Ba/Ti, Ba/Sr в разрезе позднекайнозойских отложений скв. 507 D

Литология - см. на рис. 62, остальные условные обозначения - см. на рис. 69

с их загрязнением продуктами, остаточными после растворения кремнисто-карбонатных илов в результате воздействия гидротермальных растворов. Таким образом, наметившаяся при изучении скв. 509В тенденция возрастания селадонизации с глубиной свойственна и данному разрезу, за исключением нижней части зеленых глин, загрязненных остаточными продуктами растворения.

Так же как и в скв. 509В (см. рис. 62), глинистый материал фораминиферовых наннофоссилиевых илов отличается относительно более высокими количествами AI, чем зеленые гидротермальные глины.

Аспекты геохимии. Тенденции в распределении отношений Mn/Fe, Ba/Ti и Ba/Sr, установленные при изучении осадков скв. 509В (см. рис. 69), в целом характерны и для изучаемого разреза (см. рис. 71). Наблюдаемые отклонения, по-видимому, связаны

### Таблица 37

Химический состав верхнекайнозойских отложений скв. 507D (вес.% в пересчете на воздушно-сухую навеску)

| № обр.                               | SiO2  | TIO2  | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MnO  |   |
|--------------------------------------|-------|-------|--------------------------------|--------------------------------|------|---|
| 1-1-39-41                            | 16,44 | 0.11  | 3,60                           | 3,27                           | 3,95 | _ |
| 2-1-30-32                            | 44,45 | 0.05  | 1,37                           | 27,96                          | 0,24 |   |
| 2_2_77_79                            | 39,62 | 0.24  | 5,51                           | 11,22                          | 0,11 |   |
| 3-1-80-82                            | 45,83 | 0.06  | 1,68                           | 26,42                          | 0,11 |   |
| 3-2-85-87                            | 44,27 | 0.35  | 8,54                           | 7,91                           | 0,18 |   |
| 3-3-21-23                            | 47,65 | 0.02  | 0,88                           | 28,67                          | 0,03 |   |
| 4-1-62-64                            | 48,94 | 0.004 | 0,38                           | 29,36                          | 0,02 |   |
| 4-2-45-47                            | 48,37 | 0.05  | 1,40                           | 27,05                          | 0,04 |   |
| 4-3-49-51                            | 44,94 | 0.11  | 3,01                           | 22,58                          | 0,05 |   |
| 51-7880                              | 52,46 | 0.29  | 9,81                           | 8,47                           | 0,08 |   |
| 5-2-82-84                            | 12,55 | 0.11  | 2,99                           | 3,90                           | 0,22 |   |
| 5-3-28-30                            | 47,89 | 0.05  | 1,30                           | 27,71                          | 0,03 |   |
| 6-1-12-14                            | 47,22 | 0.02  | 0,76                           | 29,30                          | 0,05 |   |
| 6-2-43-45                            | 34,75 | 0.20  | 4,87                           | 13,90                          | 0,11 |   |
| 6-3-101-103                          | 16,07 | 0.08  | 2,23                           | 7,69                           | 0,22 |   |
| 7-1-84-86                            | 19,82 | 0.08  | 2,39                           | 9,12                           | 0,23 |   |
| 7-2-134-136                          | 29,52 | 0,05  | 2,13                           | 15,40                          | 0,14 |   |
| 7-3-131-133                          | 26,22 | 0.03  | 1,11                           | 14,59                          | 0,17 |   |
| 8-1-77-79                            | 24,13 | 0.06  | 1,63                           | 13,10                          | 0,17 |   |
| 8-2-57-59                            | 8,56  | 0.04  | 1,50                           | 4,16                           | 0,34 |   |
| 8-3-107-109                          | 11,50 | 0.11  | 3,26                           | 3,28                           | 0,18 |   |
| 9-1-70-73                            | 10,13 | 0.08  | 2,54                           | 3,38                           | 0,20 |   |
| 9-2-70-73                            | 6,45  | 0,06  | 2,18                           | 1,54                           | 0,20 |   |
| 9-3-70-73                            | 7,51  | 0.07  | 2,31                           | 1,42                           | 0,29 |   |
| 10—1 <del>—9</del> 5 <del>—9</del> 8 | 8,95  | 0,12  | 2,73                           | 1,81                           | 0,28 |   |

с загрязняющей и разбавляющей ролью продуктов растворения кремнисто-карбонатных осадков при взаимодействии этих остатков с гидротермальными растворами.

### Скважина 507 F (табл. 38; рис. 72, 73)

Скважина 507F располагается в 50 м к запад-северо-западу по простиранию гидротермального холмовидного хребта от рассмотренной выше скв. 507D. Глубина океана здесь 2704 м. По данным бортового описания, скважина пробурена на фланге холма.

| № обр.      | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MnO  |  |
|-------------|------------------|------------------|--------------------------------|--------------------------------|------|--|
| 1-1-80-82   | 11,46            | 0,06             | 1,90                           | 1,01                           | 040  |  |
| 2-2-80-82   | 47,28            | 0,03             | 1,06                           | 28,08                          | 0,03 |  |
| 2-3-53-55   | 44,29            | 0,22             | 5,49                           | 18,68                          | 0,07 |  |
| 2-3-118-120 | 41,73            | 0,29             | 6,96                           | 13,13                          | 0,10 |  |
| 3-1-68-70   | 20,70            | 0,13             | 3,64                           | 4,21                           | 0,39 |  |
| 3           | 15,98            | 0,11             | 3,11                           | 3,73                           | 0.29 |  |
| 4-3-71-73   | 9,86             | 0,08             | 2,57                           | 1,81                           | 0,24 |  |
| 5-2-75-77   | 9,00             | 0,07             | 2,47                           | 2,32                           | 0,20 |  |
| 627577      | 9,58             | 0.09             | 2,92                           | 2.02                           | 0.21 |  |
| 7-1-70-72   | 8,05             | 0,08             | 2,62                           | 1,58                           | 0,21 |  |
| 7-27072     | 12,46            | 0,13             | 3,71                           | 1,98                           | 0,18 |  |
| 7-3-70-72   | 17,13            | 0,43             | 4,68                           | 4,31                           | 0,30 |  |
| 8-1-70-72   | 12.53            | 0,13             | 2,47                           | 24,79                          | 0,47 |  |
| 9–1–20–22   | 9,02             | 0,09             | 2,45                           | 2,51                           | 0,55 |  |

Таблица 38 Химический состав верхнекайнозойских отложений скв. 507F (вес.% в пересчете на воздушно-сухую навеску)

| MgO  | CaO   | P <sub>2</sub> O <sub>5</sub> | N <sub>2</sub> O | K₂O  | BaO   | SrO   |
|------|-------|-------------------------------|------------------|------|-------|-------|
| 1,61 | 28,92 | 0,14                          | 4,44             | 0.51 | 0.39  | 0.15  |
| 3,18 | Нет   | 0,08                          | 3,38             | 1,26 | 0,168 | Нет   |
| 3,48 | 2,40  | 0.13                          | 9.24             | 1.42 | 0,498 | "     |
| 3,42 | Нет   | 0.07                          | 4.33             | 1.98 | 0,175 | "     |
| 3,32 | 2,57  | 0,12                          | 8,54             | 1,57 | 0,607 | "     |
| 3,24 | Нет   | 0,05                          | 2,89             | 1,98 | 0,082 | "     |
| 3,37 | **    | 0,02                          | 2,25             | 2,86 | Нет   | "     |
| 3,73 | **    | 0,06                          | 3,43             | 2,00 | 0,107 | 0,006 |
| 4,28 | "     | 0,06                          | 5,67             | 2,37 | 0,223 | 0,008 |
| 2,75 | 0,40  | 0,09                          | 7,02             | 2,92 | 0,309 | 0,005 |
| 1,45 | 36,68 | 0,10                          | 3,07             | 0,53 | 0,213 | 0,204 |
| 4,57 | Нет   | _                             | 3,56             | 2,74 | 0,085 | Нет   |
| 3,25 | 0,90  | 0,05                          | 2,84             | 2,28 | 0,043 | "     |
| 4,02 | 10,14 | 0,10                          | 6,94             | 1,78 | 0,148 | 0,05  |
| 2,07 | 33,49 | 0,04                          | 3,29             | 0,64 | 0,032 | 0,199 |
| 2,45 | 30,31 | 0,07                          | 3,13             | 1,25 | 0,019 | 0,141 |
| 3,53 | 21,55 | 0,06                          | 2,93             | 1,60 | 0,012 | 0,097 |
| 3,40 | 24,02 | 0,04                          | 3,08             | 1,31 | 0,012 | 0,124 |
| 2,96 | 25,52 | 0,04                          | 3,21             | 1,41 | 0,021 | 0,183 |
| 1,23 | 45,69 | 0,04                          | 2,05             | 0,48 |       | 0,177 |
| 1,31 | 37,86 | 0,05                          | 2,72             | 0,50 | 0,315 | 0,230 |
| 1,02 | 43,25 | 0,04                          | 2,27             | 0,48 | _     | 0,184 |
| 0,63 | 47,31 | 0,01                          | 2,00             | 0,31 | -     | 0,199 |
| 0,77 | 46,54 | 0,03                          | 2,14             | 0,34 |       | 0,214 |
| 1,15 | 44,77 | 0,01                          | 2,40             | 0,37 | _     | 0,140 |

В верхних 15 м кремнистых фораминиферовых наннофоссилиевых осадков присутствует 2-метровая пачка зеленых гидротермальных глин. Ниже залегают фораминиферовые наннофоссилиевые илы.

Минералогия. Зеленые гидротермальные глины, по данным рентгеновской дифрактометрии и ИК-спектроскопии, представлены двумя типами смешаннослойных высокожелезистых фаз слюда-смектит с отношением слюдистых и смектитовых слоев 0,8:0,2 и 0,2:0,8, чередующихся в полном беспорядке (обр. 2–2–80–82). Отмечается примесь

| MgO  | CaO   | P <sub>2</sub> O <sub>5</sub> | Na <sub>2</sub> O | К,0  | BaO   | SrO   |
|------|-------|-------------------------------|-------------------|------|-------|-------|
| 0,78 | 42,93 | 0,03                          | 2,72              | 0,33 |       | 0,120 |
| 3,42 | Нет   | 0.03                          | 2,76              | 1,59 | 0,067 | Нет   |
| 3,67 | "     | 0,09                          | 6,35              | 1,33 | 0,510 | 0,027 |
| 4,07 | 0.22  | 0,11                          | 8,90              | 1,72 | 0,536 | 0,02  |
| 1,72 | 32,86 | 0,09                          | 4,05              | 0,63 | 0,370 | 0,162 |
| 1,22 | 37,82 | 0,08                          | 3,50              | 0,54 | 0,304 | 0,171 |
| 1,03 | 44,30 | 0,03                          | 2,66              | 0,32 | 0,182 | 0,211 |
| 0,74 | 45,31 | 0,05                          | 2,37              | 0,39 | 0,243 | 0,192 |
| 0,77 | 45,15 | 0,05                          | 2,33              | 0,42 | 0,236 | 0,183 |
| 0,69 | 46,01 | 0,05                          | 2,28              | 0,31 | 0,201 | 0,169 |
| 1,14 | 42,70 | 0,04                          | 2,49              | 0,42 | 0,326 | 0,132 |
| 2,22 | 39,16 | 0,13                          | 1,99              | 0,32 | 0,155 | 0,088 |
| 1,51 | 28,13 | 0,09                          | 2,09              | 0,47 | _     | 0,095 |
| 1,37 | 43,29 | 0.04                          | 1.90              | 0,19 | _     | 0.134 |







Условные обозначения - см. на рис. 62



Рис. 73. Распределение величин отношений Mn/Fe, Ba/Ti и Ba/Sr. в разрезе позднекайнозойских отложений скв. 507F

Литология - см. на рис. 62, остальные условные обозначения - на рис. 69

полевых шпатов и кварца (см. рис. 72). Так же как и в случае скв. 509В, в рассматриваемом разрезе глинистые компоненты гидротермальных и кремнисто-карбонатных пелагических осадков резко различаются по содержанию Fe и Al. Эти различия отражены в распределении отношений Fe/(Fe + Mg + Al) и (Al/(Fe + Mg + Al) (см. рис. 72). Судя по этим данным, глинистое вещество кремнисто-карбонатных осадков представлено слабожелезистым монтмориллонит-иллитом, т.е. компонентами, существенно отличными по своей природе от гидротермальных глин.

Аспекты геохимии. Основные тенденции в распределении величин отношений Mn/Fe, Ba/Ti и Ba/Sr, установленные при изучении гидротермальных и пелагических осадков в скв. 509B (см. рис. 69), отмечаются и для рассматриваемого разреза (см. рис. 73). Однако при сопоставлении данных обращают на себя внимание относительно меньшие значения этих отношений, что можно интерпретировать как следствие несколько ослабленного влияния гидротермальных эксгаляций на седиментацию. Положение скважины на фланге гидротермального холма и относительно малая доля гидротермальных осадков (2 м) в общем разрезе отложений (29 м) не противоречат такому толкованию.







Условные обозначения - см. на рис. 62



Рис. 73. Распределение величин отношений Mn/Fe, Ba/Ti и Ba/Sr. в разрезе позднекайнозойских отложений скв. 507F

Литология - см. на рис. 62, остальные условные обозначения - на рис. 69

полевых шпатов и кварца (см. рис. 72). Так же как и в случае скв. 509В, в рассматриваемом разрезе глинистые компоненты гидротермальных и кремнисто-карбонатных пелагических осадков резко различаются по содержанию Fe и Al. Эти различия отражены в распределении отношений Fe/(Fe + Mg + Al) и (Al/(Fe + Mg + Al) (см. рис. 72). Судя по этим данным, глинистое вещество кремнисто-карбонатных осадков представлено слабожелезистым монтмориллонит-иллитом, т.е. компонентами, существенно отличными по своей природе от гидротермальных глин.

Аспекты геохимии. Основные тенденции в распределении величин отношений Mn/Fe, Ba/Ti и Ba/Sr, установленные при изучении гидротермальных и пелагических осадков в скв. 509B (см. рис. 69), отмечаются и для рассматриваемого разреза (см. рис. 73). Однако при сопоставлении данных обращают на себя внимание относительно меньшие значения этих отношений, что можно интерпретировать как следствие несколько ослабленного влияния гидротермальных эксгаляций на седиментацию. Положение скважины на фланге гидротермального холма и относительно малая доля гидротермальных осадков (2 м) в общем разрезе отложений (29 м) не противоречат такому толкованию.

### Скважина 507Н (табл. 39; рис. 74, 75)

Скважина 507Н была пробурена в 200 м кюгу от скв. 507D, на участке, удаленном от гидротермальных холмов, (глубина океана здесь 2700 м), и вскрыла 32-метровую пачку пелагических осадков, включающую (сверху вниз) 13—14 м кремнистых фораминиферовых наннофоссилиевых илов, 4 м слабокремнистых разностей и 14—15 м фораминиферовых наннофоссилиевых осадков, без сколько-нибудь заметных признаков зеленых гидротермальных глин [Initial Reports..., 1981].

Минеральный состав собственно пелагических осадков близок к соответствующим разновидностям, описанным для скв. 509В (см. рис. 62 и 69). В распределении величин отношение Fe/ (Fe + Mg + Al) и Al/ (Fe + Mg + Al) в разрезе скв. 507Н (см. рис. 74) обращает на себя внимание относительная монотонность, свидетельствующая о том, что глинистые компоненты представлены слабожелезистым монтмориллонит-иллитом.



Рис. 74. Распределение величин отношений Fe/(Fe+Mg+AI) и AI/(Fe+Mg+AI) в разрезе позднекайнозойских отложений скв. 507Н

Условные обозначения — см. на рис. 62

# Таблица I







Таблица II











# Таблица V



Таблица V







Таблица VIII





Рис. 75. Распределение величин отношений Mn/Fe, Ba/Ti, Ba/Sr в разрезе позднекайнозойских отложений скв. 507Н

Литология - см. на рис. 62, остальные условные обозначения - на рис. 69

Сколько-нибудь выраженных признаков гидротермальных глин, для которых характерны крайне низкие значения Al/ (Fe + Mg + Al)  $\ll$  0,1, в этом разрезе не установлено. Величины отношений Mn/Fe, Ba/Sr и особенно Ba/Ti несколько превышают значения аналогичных характеристик для глубоководных карбонатных осадков, что может свидетельствовать о влиянии гидротермальных эксгаляций на кремнисто-карбонатную седиментацию на этом участке. Однако по сравнению со скважинами, пробуренными на вершинах гидротермальных холмов и соответственно менее удаленными от разломов в фундаменте, воздействие гидротерм на седиментацию в данном разрезе проявлено относительно слабо (см. рис. 69, 75).

### Скважина 506 (табл. 40; рис. 76, 77)

Станция 506 представляет собой сравнительно ограниченный участок (1 × 2 км) поля относительно крупных гидротермальных холмов и хребтов (высотой 15–20 м), характеризующихся высокими значениями теплового потока и значительной гидротермальной активностью [initial reports..., 1981].

Таблица 39 Химический состав верхнекайнозойских отложенийскв. 507Н (вес.% в пересчете на воздушно-сухую навеску)

| № обр.      | SiO2          | TiO, | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MnO  |
|-------------|---------------|------|--------------------------------|--------------------------------|------|
| 117981      | 19,82         | 0,11 | 2,94                           | ' 1,94 '                       | 0,24 |
| 1-2-79-81   | 21,50         | 0,10 | 2,75                           | 1,49                           | 0,25 |
| 2-1-79-81   | 25,97         | 0,12 | 3,36                           | 1,85                           | 0,24 |
| 227981      | 23,31         | 0,17 | 4,34                           | 2,40                           | 0,32 |
| 2-3-79-81   | 19,42         | 0,13 | 3,88                           | 2,01                           | 0,19 |
| 3–1–48–50   | 23,14         | 0,13 | 3,69                           | 2,07                           | 0,23 |
| 324850      | 27,82         | 0,18 | 4,95                           | 2,65                           | 0.28 |
| 4-1-60-62   | 16,33         | 0,10 | 3,09                           | 2,13                           | 0,21 |
| 4-36062     | 13,78         | 0,07 | 2,41                           | 3,08                           | 0,20 |
| 5-1-110-112 | 12,40         | 0,12 | 3,14                           | 2,11                           | 0,17 |
| 5-2-110-112 | 13,57         | 0,09 | 3,13                           | 1,51                           | 0,20 |
| 5-3-110-112 | 9,51          | 0,09 | 2,45                           | 1,31                           | 0,17 |
| 6-1-79-81   | 7,55          | 0,07 | 2,28                           | 1,20                           | 0,17 |
| 6-2-79-81   | 9,12          | 0,09 | 2,71                           | 1,63                           | 0,17 |
| 6-37981     | 11,67         | 0,12 | 3,27                           | 2,16                           | 0,16 |
| 7-1-79-81   | 8, <b>9</b> 5 | 0,08 | 2,55                           | 1,25                           | 0,17 |
| 7-2-79-81   | 15,85         | 0,14 | 4,08                           | 2,74                           | 0,18 |
| 737981      | 12,49         | 0,15 | 3,55                           | 2,47                           | 0,17 |
| 818082      | 8,73          | 0,10 | 2,71                           | 1,47                           | 0,19 |
| 8-2-60-62   | 8,72          | 0,09 | 2,61                           | 1,68                           | 0,38 |

Таблица 40

Химический состав верхнекайнозойских отложений скв. 506 (вес.% в пересчете на воздушно-сухую навеску)

| № обр.      | SiO2  | TiO,  | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MnO  |
|-------------|-------|-------|--------------------------------|--------------------------------|------|
| 1-1-19-21   | 12,41 | 0,08  | 2,50                           | 1,70                           | 1,46 |
| 2-2-86-88   | 10,21 | 0,07  | 1,67                           | 1,04                           | 0,29 |
| 2-2-87-89   | 33,41 | 0,22  | 5,54                           | 9,99                           | 0,14 |
| 3-1-97-99   | 42,50 | 0,23  | 5,52                           | 17,04                          | 0,11 |
| 3-2-63-65   | 15,75 | 0,15  | 3,80                           | 3,45                           | 0,17 |
| 3-2-136-138 | 47,11 | 0,014 | 0,38                           | 28,35                          | 0,08 |
| 3-3-38-40   | 47,55 | 0,05  | 1,10                           | 26,57                          | 0,06 |
| 4-1-77-79   | 44,61 | 0,24  | 5,44                           | 18,64                          | 0,15 |
| 4-2-110-112 | 40,16 | 0,08  | 1,92                           | 20,27                          | 0,16 |
| 4-3-100-102 | 44,61 | 0,25  | 5,42                           | 18,26                          | 0,14 |

Скважина 506 пробурена на вершине гидротермального холма (глубина океана здесь 2714 м). Подчеркнем, что истинная стратиграфическая последовательность начинается с верха керна 2 (см. рис. 76). Общая мощность пачки гидротермальных глин 9,5 м; ниже располагается 10-метровая пачка фораминиферовых наннофоссилиевых илов.

«Минералогия. Зеленые гидротермальные глины, по данным рентгеновской дифрактометрии и ИК-спектроскопии, представлены гаммой смешаннослойных неупорядоченных фаз слюда-смектит, присутствующих в относительных количествах 0,8:0,2 (обр. 3–2–136–138, 3–3–38–40 и 4–2–110–112) [Дриц, Сахаров, 1976]. В незначительных количествах в образцах наблюдается биоморфный кальцит. Примечательной особенностью отмеченных выше образцов зеленых гидротермальных глин является их высокая железистость при весьма низких количествах AI (см. табл. 40): Fe/(Fe + + Mg + AI) > 0,75, тогда как AI/(Fe + Mg + AI)

| MgO  | CaO    | P <sub>2</sub> O <sub>5</sub> | Na <sub>2</sub> O | К,0  | −BaÛ  | CrO   |
|------|--------|-------------------------------|-------------------|------|-------|-------|
| 1,24 | 32,38  | 0,08                          | 3,37              | 0,42 | 0,192 | 0,108 |
| 1,20 | 33,90  | 80,0                          | 3,31              | 0,39 | 0.251 | 0,244 |
| 1,48 | 30,11  | 0,06                          | 3,98              | 0,49 | 0,267 | 0,223 |
| 1,44 | 33,65  | 0,10                          | 3,16              | 0,59 | 0,376 | 0,383 |
| 1,13 | 35,16  | 0,06                          | 2,60 、            | 0,53 | 0,284 | 0,283 |
| 1,37 | 31 ,65 | 0,05                          | 3,54              | 0,58 | 0,303 | 0,227 |
| 1,72 | 33,31  | 0,11                          | 3,81              | 0,70 | 0,395 | 0,289 |
| 0,94 | 38,4   | 0,03                          | 2,94              | 0,36 | -     | 0,084 |
| 1,04 | 39,79  | 0,05                          | 3,11              | 0,41 | -     | 0,095 |
| 1,14 | 42,93  | 0,03                          | 2,58              | 0,41 | 0,191 | 0,130 |
| 1,08 | 41,78  | 0,06                          | 2,47              | 0,55 | 0,255 | 0,125 |
| 1,09 | 45,83  | 0,03                          | 2,14              | 0,32 | 0,178 | 0,127 |
| 0,90 | 46,99  | 0,03                          | 1,90              | 0,29 | 0,141 | 0,143 |
| 0,95 | 45,02  | 0,02                          | 2,13              | 0,33 | 0,210 | 0,130 |
| 1,27 | 42,88  | 0,07                          | 2,49              | 0,42 | 0,259 | 0,126 |
| 1,20 | 45,87  | 0,001                         | 2,14              | 0,31 | 0,104 | 0,124 |
| 1,51 | 39,14  | 0,11                          | 2,73              | 0,62 | 0,355 | 0,122 |
| 1,52 | 42,68  | 0,04                          | 2,58              | 0,45 | 0,330 | 0,113 |
| 1,01 | 44,23  | 0,04                          | 2,53              | 0,45 | 0,190 | 0,117 |
| 1,10 | 45,01  | 0,04                          | 1,9               | 0,32 | 0,137 | 0,142 |

| CaO   | P <sub>2</sub> O <sub>5</sub> | Na <sub>2</sub> O | К₂О  | MgO  | BaQ   | SrO  |
|-------|-------------------------------|-------------------|------|------|-------|------|
| 41.09 | , 0.15                        | 2.91              | 0.24 | 0.95 | 1     | 0.05 |
| 45.20 | 0,10                          | 2,20              | 0,34 | 0,85 | 0,30  | 0,25 |
| 13,72 | 0,12                          | 6,27              | 1.41 | 3.06 | 0.54  | 0.11 |
| 1,00  | 0,10                          | 7,48              | 1,99 | 4,11 | 0,594 | 0.03 |
| 37,32 | 0,09                          | 3,29              | 0,55 | 1,40 | 0,283 | 0,21 |
| 0,70  | 0,02                          | 2,17              | 2,73 | 3,69 | 0,05  | _    |
| 0,3   | 0,03                          | 4,09              | 2,48 | 3,93 | 0,280 | 0,02 |
| 0,65  | 0,10                          | 5,51              | 2,19 | 4,33 | 0,648 | 0,02 |
| 5,87  | 0,04                          | 2,53              | 2,51 | 4,55 | 0,268 | 0,04 |
| 1,98  | 0,08                          | 4,97              | 2,40 | 4,69 | 0,527 | 0,02 |

от этой группы относительно однородных образцов залегающая ниже зеленая глина (обр. 4–3–100–102) представлена непрерывной гаммой смешаннослойных фаз переменного состава, для которой соотношения между слоями слюдистого и смектитового состава установить крайне трудно. Отмечаются заметные количества филлипсита и кварца. Характерно,что этот образец характеризуется относительно повышенным содержанием алюминия: Al/ (Fe + Mg + Al) > 0,15. Особенности химизма и минерального состава данной разности зеленой глины позволяют считать, что она заметно обогащена остаточными продуктами растворения пелагических кремнисто-карбонатных илов.

Аспекты геохимии. Отмечавшиеся в рассмотренных выше разрезах гидротермальных и пелагических осадков особенности распределения Mn, Fe, Ba, Sr наблюдаются и в разрезе скв. 506 (см. табл. 40): резкая обедненность зеленых гидротермальных глин марганцем (Mn/Fe < 0,05), относительно высокие величины в них Ba/Ti и Ba/Sr (см. рис. 77).



Рис. 76. Распределение величин отношений Fe/(Fe+Mg+AI) и AI/(Fe+Mg+AI) в разрезе позднекайнозойских отложений скв. 506

Условные обозначения - см. на рис. 62

### Скважина 506С (табл. 41; рис. 78, 79)

Скважина пробурена на гидротермальном холме (глубина океана здесь 2717 м). Разрез осадков сравнительно неравномерно охарактеризован образцами (см. рис. 78). Общая мощность зеленых гидротермальных глин около 9 м.

Минералогия. Верхняя пачка зеленых гидротермальных глин представлена, по данным рентгеновской дифрактометрии и ИК-спектроскопии, гаммой высокожелезистых неупорядоченных смешаннослойных фаз слюда-смектит, присутствующих в соотношении 0,6:0,4 (обр. 4–1–105–107). Нижняя пачка (обр. 8–1–81–83) сложена сходными глинами, в которых относительные количества слюдистых и смектитовых слоев примерно равны 0,7:0,3.

Так же как и в разрезах рассмотренных выше скважин, зеленые глины отличаются высокой железистостью (см. табл. 41) и крайне низкими количествами алюминия: Al/ (Fe + Mg + Al) <</p>



Рис. 77. Распределение величин отношений Mn/Fe, Ba/Ti, Ba/Sr в резрезе позднекайнозойских отложений скв. 506

Литология - см. на рис. 62, остальные условные обозначения - на рис. 69.

| № обр.      | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>3</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MnO  | MgO  |
|-------------|------------------|------------------|--------------------------------|--------------------------------|------|------|
| 4-1-105-107 | 48,86            | 0,007            | 0,44                           | 29,47                          | 0,03 | 3,84 |
| 4-2-41-43   | 39,01            | 0,22             | 5,08                           | 15,58                          | 0,14 | 4,33 |
| 4-3-61-63   | 47,85            | 0,018            | 0,69                           | 27,16                          | 0,04 | 4,58 |
| 5-1-122-124 | 14,42            | 0,12             | 3,26                           | 3,41                           | 0,29 | 1,68 |
| 5-2-113-115 | 11,07            | 0.09             | 2,76                           | 1.64                           | 0.25 | 1,39 |
| 5-3-112-114 | 14,66            | 0,27             | 3,82                           | 3,43                           | 0,20 | 1,67 |
| 6-1-80-82   | 11,92            | 0,11             | 3.17                           | 1,95                           | 0.23 | 1,19 |
| 6-2-80-82   | 8.52             | 0,08             | 2,40                           | 1,59                           | 0.19 | 1,00 |
| 6-3-80-82   | 9.06             | 0,08             | 2,70                           | 1.03                           | 0.19 | 0.77 |
| 7-1-114-116 | 9,00             | 0,11             | 2,87                           | 1,64                           | 0.36 | 0,89 |
| 8-1-81-83   | 45,01            | 0,04             | 0,85                           | 27.02                          | 0.20 | 3,57 |
| 8-2-24-26   | 24,98            | 0.52             | 6.34                           | 7.77                           | 0.27 | 3.00 |

Таблица 41 Химический состав верхнекайнозойских отложенийска. 506 С (вес.% в пересчете на воздушно-сухую навоску)

Таблица 41 (окончание)

| № обр.      | CaO    | P205 | Na <sub>2</sub> O | К, 0 | BaO   | SrO   |
|-------------|--------|------|-------------------|------|-------|-------|
| 4-1-105-107 | 0,50   | 0,03 | 2.69              | 2,88 | 0,014 | i —   |
| 4-2-41-43   | 6,42   | 0,09 | 6.05              | 2,15 | 0,373 | -     |
| 4-3-61-63   | 0,00   | 0,03 | 3.18              | 3,05 | 0,055 | _     |
| 5-1-122-124 | 37,88  | 0,06 | 3.51              | 0,48 | -     | _     |
| 5-2-113-115 | 43,12  | 0.02 | 2.49              | 0.34 | 0.208 |       |
| 5-3-112-114 | 40,35  | 0,05 | 2 69              | 0.41 | 0.18  | -     |
| 6-1-80-82   | 42,55  | 0.09 | 2 69              | 0.45 | 0.29  | 0.07  |
| 6-2-80-82   | 45,070 | 0,05 | 2.13              | 0.30 | 0.18  | 0.36  |
| 6-3-80-82   | 47,36  | 0.04 | 2.09              | 0.36 | 0.17  | _     |
| 7-1-114-116 | 46.22  | 0.06 | 2,00              | 0.37 | 0.22  | _     |
| 8-1-81-83   | 4.31   | 0.04 | 2,10              | 2 69 | 0.059 | 0.02  |
| 8-2-24-26   | 30,96  | 0,12 | 2,02              | 0,48 | 0,165 | 0,129 |

глинистые компоненты этих осадков к слабожелезистым монтмориллонит-иллитам (см. рис. 78).

Аспекты геохимии. Тенденции поведения Mn, Fe, Ba, Sr и других компонентов, наблюдавшихся для опорного разреза 509В (см. рис. 69), характерны и для рассматриваемых осадков. Зеленые гидротермальные глины крайне обеднены Mn; повышенные значения величин отношений Ba/Ti и Ba/Sr, наблюдаемые не только в гидротермальных осадках, но и в карбонатных пелагических илах, свидетельствуют о заметном влиянии эксгаляций на седиментацию (см. рис. 79).

### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ (К МОДЕЛИ ПРОЦЕССА ГИДРОТЕРМАЛЬНОГО МИНЕРАЛООБРАЗОВАНИЯ)

Приведенные выше результаты исследований и имеющаяся информация позволяют считать, что гидротермальные осадки представлены преимущественно двумя типами: существенно железистой зеленой глобулярной глиной и корками гидроокислов Мп. Изучение ненарушенных кернов осадочного разреза скважин показывает, что гидротермальные зеленые глины, как правило, развиты в верхней половине разреза и в их кровле располагаются корковидные слои гидроокислов Мп. Но рядом скважин вскрыты относительно подчиненные прослои зеленых гидротермальных глин в нижней половине разреза: нередко эти глины перемежаются со слабокремнистыми, слабоглинистыми фораминиферо-наннофоссилиевыми осадками верхнего плейстоцена (скв. 506С, 507Д, 509В; см. рис. 62, 70, 78). В целом для исследованного района Галапагосской зоны рифта отмечается выраженная тенденция гидротермальной деятельности в позднем плейстоцене.

Данные рентгеновской дифрактометрии. ИК-спектроскопии, электронографии и химического анализа (см. табл. 34, 37—41, рис. 63—68) свидетельствуют, что гидротермальные зеленые глины представлены гаммой неупорядоченных смешаннослойных фаз: Fe-слюда (селадонит) и Fe-смектит (нонтронит). Для ряда разрезов наблюдается тенденция усиления селадонитизации с глубиной: количество селадонитовых слоев увеличивается, достигая 80%. Как правило, селадонитизация сопровождается возрастанием степени структурной упорядоченности. Результаты электронографического исследования показывают, что по параметрам элементарных ячеек и положению 2:1 слоев такие разности близки к Fe<sup>3+</sup> слюдам политипной модификации IM (см. табл. 35 и рис. 68). Наиболее типичные разности зеленых глин являются существенно железистыми соединениями со следовыми или весьма незначительными количествами Al<sub>2</sub>O<sub>3</sub> (см. табл. 34, 37-41) при относительно постоянных и умеренных содержаниях Мд. Эти особенности состава отражены в величинах отношения AI/ (Fe + Mg + Ai), не превышающего обычно 0,001-0,1, тогда как для глинистых компонентов кремнистых фораминиферово-наннофоссилиевых илов это отношение редко ниже 0.3-0.5 (см. рис. 62, 70, 72, 74, 76, 78). Соответственно для чистых разностей гидротермальных глин величина отношения Fe/ (Fe + Mg + Al) не ниже 0,8-0,9.



Рис. 78. Распределение минеральных компонентов и величин отношений Fe/(Fe+Mg+AI) и AI/(Fe+ +Mg+AI) в разрезе позднекейнозойских отложений скв. 506 С

На врезке показано расположение скважин станции 506

Условные обозначения - см. на рис. 62

| X        |      | una,      | Литало-                                 | № обр.       | Mn/Fe | <b>β</b> α / <sup>•</sup> | Ti       | Ba                                            | Sr  |       |
|----------|------|-----------|-----------------------------------------|--------------|-------|---------------------------|----------|-----------------------------------------------|-----|-------|
| Kep      | 24.2 | w<br>ghul | RUS                                     |              | Q2    | 2,0                       | 4,0      | 4,0                                           | 8,0 | 12,0  |
|          | ~    | 1         | +++++++++++++++++++++++++++++++++++++++ |              |       |                           |          |                                               | -   |       |
| L        | Ł    |           | <u> </u>                                |              |       |                           |          |                                               |     |       |
| ł        | Ŀ    | 5         | * <u>+</u> ** <u>*</u> ** <u>*</u>      |              |       |                           |          |                                               |     |       |
| ~        | ŀ    |           |                                         |              |       |                           |          |                                               |     |       |
| $\vdash$ | f    |           | ••••                                    |              |       |                           |          |                                               |     |       |
| 2        |      | 10        | + + +                                   |              |       |                           |          |                                               |     |       |
| L        | þ    |           |                                         | L            |       |                           |          |                                               |     |       |
|          | È    |           |                                         | 4-1-105-107  | a,001 | , x , x                   |          |                                               |     |       |
| +        | Ŀ    | 15        |                                         | 4-2-41-43    | 0,01  | X X<br>X X                |          |                                               |     |       |
| L        | F    |           | ••••                                    | 4-3-61-63    | L,002 | х х<br>1 х х              | * *      |                                               |     |       |
|          | F    | 1         | ++++                                    | 5-1-122-124  |       |                           |          |                                               |     |       |
| 5        | Ŀ    |           |                                         | 5-2-113-115  | 222   | <u>х х х</u>              | х —      |                                               |     |       |
|          | ŀ    |           | +++++++++++++++++++++++++++++++++++++++ | 5-3-112-114  |       | X<br>X                    |          |                                               |     |       |
|          | ŀ    |           | ++++                                    | 5-1-80-82    | 88    | * * *                     | ×        | ""                                            |     |       |
| -        | F    |           | + + +                                   | 6-2-80-82    |       | <b>X X</b><br>K X X       | ×        | H                                             |     |       |
|          | F    | ø         | +_+_+                                   | 6-3-80-82    | X     | X X X                     | 1        | 1                                             |     |       |
|          | F    |           | ++++                                    | 7-1-114-116  | X     |                           |          |                                               |     |       |
| Ĺ        | F    | 11        | <u>++++</u>                             |              | -     |                           |          |                                               |     |       |
|          | F    |           |                                         | 8-1-81-83    | 401   | <u>,</u> .                |          | <b>*</b>                                      |     |       |
|          | Ŀ    |           | ++++                                    | 8-2-24-26    |       | ×<br>×                    |          | ٣ <u>ــــــــــــــــــــــــــــــــــــ</u> |     |       |
| h~       | P    | 1         | ininin'                                 | n 🕻          | 1 211 | 0                         | 50<br>25 | 109                                           | 71  | G     |
|          |      |           |                                         | <i>ą</i> ,00 | 2 010 |                           | (        | Z)<br>1,09                                    |     | 12,78 |

Рис. 79. Респределение величин отношений Mn/Fe, Ba/Ti, Ba/Sr в разрезе позднекайнозойских отложений скв. 506С

Литология — см. на рис. 62, остальные условные обозначения — на рис. 69

Обращает на себя внимание, что тенденция возрастания селадонитизации с глубиной характерна преимущественно для относительно чистых высокожелезистых разностей, не загрязненных остаточными продуктами растворения кремнисто-карбонатных слабоглинистых пелагических осадков. Установлено, что контаминированные типы зеленых глин представлены предельно неупорядоченной смешаннослойной фазой селадонит-смектит; для них свойственны низкие величины отношения Fe/ (Fe + Mg + AI) не выше 0,5–0,7. В подобных глинах наблюдается примесь полевого шпата, кварца, и цеолитов (главным образом филлипсита).

Отмеченные характеристики зеленых гидротермальных глин согласуются с особенностями строения, наблюдаемыми в оптический, сканирующий и просвечивающий электронный микроскопы. Разности, представленные неупорядоченной смешаннослойной гаммой селадонит-нонтронит (при существенных количествах нонтронитовых слоев), характеризуются выраженным глобулярным строением (см. табл. IV, V). В тех разновидностях, где содержание селадонитовых слоев в смешаннослойной фазе достигает 80%, отчетливо различимо развитие волокнисто-чешуйчатых новообразованных кристаллитов Fe-слюды (см. табл. VI).

Корки гидроокислов Mn сложены преимущественно тодорокитом (бузеритом)

[Frenzel, 1980; Giovanoli, 1980] отчетливой глобулярной структуры с выраженными признаками раскристаллизации (см. рис. 67, табл. I–III).

Весьма существенной геохимической особенностью рассматриваемых гидротермальных накоплений является выраженная сепарация Mn и Fe. В зеленых глинах, являющихся существенно железистыми соединениями, отмечаются крайне низкие следовые количества Mn. В гидроокисных марганцевых корках содержание Fe редко превышает единицы процента. Эти особенности отражаются в распределении Mn/Fe в разрезах скважин (см. рис. 69, 71, 73, 75, 77, 79).

Характерными индикаторами гидротермальных накоплений являются величины отношений Ba/Ti и Ba/Sr (см. рис. 69, 71, 73, 75, 77, 79). Следует подчеркнуть, что высокие величины отношения Ba/Sr, как правило, свойственны довольно чистым высокожелезистым разностям зеленых глин как продуктам отложения из относительно высокотемпературных растворов.

Приведенные данные, а также итоги предшествующих работ, выполненных нами [Varentsov, 1978, 1980] и другими исследователями, в частности результаты экспериментального изучения [Bishoff, 1969; Bishoff, Dickson, 1975; Mottl, Holland, 1978; Mottl et al., 1979; Seyfried, Bishoff, 1977; Seyfreid, Mottl, 1977; Varentsov, 1971; Bapeнцов, Степанец, 1970], позволяют считать, что наблюдаемые факты в целом не противоречат предложенным ранее концепциям [Hekinian et al., 1980; Dymond et al., 1980]. Важно подчеркнуть, что отложение осадков, слагающих гидротермальные холмы, происходило из умеренно нагретых ( $200-400^{\circ}$ C) трансформированных растворов морской воды, экстрагировавших из твердых базальтов основания существенные количества SiO<sub>2</sub>, Fe, Mn и других тяжелых металлов. Поступление гидротермальных растворов около поверхности пелагических осадков либо несколько ниже нее происходило в обстановке значительных градиентов температуры, окислительно-восстановительного потенциала и pH. Можно считать, что наличие этих градиентов способствовало резкому разделению Fe и Mn.

Отложение Fe совместно с SiO<sub>2</sub> и умеренными количествами Mg, происходившее в обстановке относительно высоких температур, слабоокислительных значений Eh и низких значений рН, приводило к формированию колломорфных, глобулярных накоплений неупорядоченных смешаннослойных фаз нонтронит-селадонит. Отметим, что Fe-слюда могла изначально присутствовать в весьма подчиненных количествах. Наличие селадонитовых выделений в миндалинах и прожилках измененных базальтов основания [Pertsev, Rusinov, 1980; Rusivov et al., 1980] позволяет допустить, что относительно небольшие количества селадонита могут рассматриваться как первичные компоненты, синтезированные из гидротермальных растворов. Формирование же существенных количеств селадонита связано с постседиментационным изменением нонтронитовых компонентов при их взаимодействии с иловыми растворами. Важно подчеркнуть, что при взаимодействии начальных порций гидротермальных растворов со слабоглинистыми кремнисто-карбонатными осадками последние растворялись и формировавшиеся зеленые глины в существенной мере загрязнялись SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> и другими компонентами. Однако из поступавших затем массированных порций гидротерм происходило высаживание значительных количеств относительно чистых железистых слоистых силикатов. Гидроокислы Mn, представленные тодорокитом (бузеритом), отлагались из остаточных порций гидротермальных растворов в обстановке относительно низких температур и значений рН и Еh, характерных для придонных вод областей активного вулканизма. Обращает на себя внимание, что среди исследованных образцов корок гидроокислов Mn был установлен 10Å-манганат-тодорокит (бузерит), являющийся относительно слабо окисленной модификацией по сравнению с бернесситом и δ-ΜnO2. Гидроокислы Mn, обрастающие в виде корок современную поверхность гидротермальных холмов, представлены преимущественно бернесситом и, по-видимому, в меньшей мере — тодорокитом [Corliss et al., 1978]. Таким образом, развитие тодорокитовых (бузеритовых) корок, обрастающих наколления железистых глин, свидетельствует о несколько менее окислительном режиме придонных вод по сравнению с современными условиями. Это может быть связано как с некоторым дефицитом кислорода из-за массированных гидротермальных эксгаляций и соответственно повышенной температуры придонных вод, так и с высокими скоростями пелагической седиментации (около 50 мм · 10<sup>-3</sup> · год<sup>-1</sup>).

Вместе с тем определенная роль в нарастании корковидных образований гидро-201 окислов Мп могла принадлежать процессам хемосорбционного (с автокаталитическим окислением) поглощения этого металла из придонных вод, обогащенных Мп из вулканических эксгаляций [Weiss, 1977; Varentsov, 1980].

Следует отметить, что главная масса Fe и Mn в исследуемом районе отлагалась при массированном поступлении гидротермальных растворов в позднем плейстоцене. Постседиментационное преобразование образовавшихся гидротермальных осадков привело к их некоторой раскристаллизации, а для зеленых глин — к выраженной селадонитизации.

\* \* \*

Исследованные гидротермальные осадки представлены двумя типами: существенно железистыми зелеными глинами и корками гидроокислов Mn. По данным рентгеновской дифрактометрии, ИК-спектроскопии, электронографии и химического анализа, гидротермальные зеленые глины являются гаммой неупорядоченных смешаннослойных фаз селадонит-нонтронит. Результаты электронографических исследований показывают, что смешаннослойные фазы по параметрам элементарных ячеек и степени трехмерной упорядоченности близки к Fe-слюдам политипной модификации IM-севадониту. В ряде разрезов наблюдается тенденция к увеличению в смешаннослойных фазах количества селадонитовых межслоев с глубиной. Корки гидроокислов Mn сложены преимущественно тодорокитом (бузеритом).

Весьма существенной геохимической особенностью гидротермальных накоплений является резкое разделение Fe и Mn. Характерными индикаторами гидротермальных образований являются величины отношений Ba/Ti и Ba/Sr, причем высокие величины отношения Ba/Sr свойственны высокожелезистым гидротермальным зеленым глинам как продуктам отложения из относительно высокотемпературных гидротермальных растворов.

Полученные данные не противоречат предложенным ранее концепциям [Hekinian et al., 1980; Dymond et al., 1980]. Отложение осадков, слагающих гидротермальные холмы, происходило из умеренно нагретых гидротерм (200—400°С), экстрагировавших из твердых базальтов фундамента аккумулируемые компоненты, в обстановке значительных градиентов температуры, окислительно-восстановительного потенциала и pH.

Главные массы Fe и Mn в исследованном районе отлагались при массированном поступлении гидротермальных растворов в позднем плейстоцене. Постседиментационные изменения сформировавшихся гидротермальных осадков привели к их некоторой раскристаллизации, а для зеленых глин — к выраженной селадонитизации.

### ГЕОХИМИЧЕСКИЕ АССОЦИАЦИИ ГЛАВНЫХ КОМПОНЕНТОВ, Ва и Sr как индикаторы процессов осадкообразования: Гидротермальные отложения зоны галапагосского рифта

Гидротермальные осадки района Галапагосского центра спрединга принадлежат к одному из характерных типов металлоносных отложений осевых зон Мирового океана. В предыдущем разделе рассмотрены вопросы минералогии и геохимии главных компонентов гидротермальных и пелагических осадков, вскрытых скважинами в этом районе. Однако, несмотря на то что химический и минеральный состав этих осадков изучены относительно детально, остается неясным, в чем существо различий геохимического поведения ряда главных компонентов (Fe, Mn, Ti, Al, Ba, Si и др.), какова роль собственно гидротермальных компонентов в процессах осадкообразования данного района. Для освещения этих вопросов предпринята попытка раскрыть геохимическую сущность парагенетических ассоциаций главных компонентов, а также Ва и Sr как гидротермальных, так и пелагических отложений [Varentsov et al., 1983]. Предполагается, что такой подход позволит приблизиться к пониманию процессов формирования этих осадков.

### МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Методические вопросы изучения минерального и химического состава осадков и фактические данные приведены в предыдущем разделе. Имеющиеся аналитические данные обрабатывались на ЭВМ ЕС-1022 в Лаборатории математических методов исследования Геологического института АН СССР (Д.А. Казимиров) по программе факторного анализа: Р-и Q-методы [Davis, 1973; Harman, 1967].

Выявленные результаты исследований и описанные выше особенности минерального и химического состава осадков с определенностью проявляются и в обособлении геохимических группировок или парагенетических ассоциаций компонентов, в которых составляющие связаны относительно прочной корреляционной связью. Геохимическая сущность этих ассоциаций как соединений, или фаз, или специфических форм нахождения определенных групп компонентов обнаруживается в результате содержательной интерпретации. Подробные сведения об использовании результатов факторного анализа опубликованы ранее [Варенцов, 1980].

# ПАРАГЕНЕТИЧЕСКИЕ АССОЦИАЦИИ КОМПОНЕНТОВ (ТАБЛ 42, 43; РИС. 80–83)

Ассоциация IA (+): SiO<sub>2</sub> (0,92), Fe<sub>2</sub>O<sub>3</sub> (0,94), MgO (0,91), P<sub>2</sub>O<sub>5</sub> (0,11), Na<sub>2</sub>O (0,53), K<sub>2</sub>O (0,96). Рассматриваемому набору компонентов принадлежит существенная роль в химизме осадков: ее вклад в дисперсию составляет 47,15% (см. табл. 42). Интерпретация на основе данных изучения минерального состава осадков и особенностей их распространения в разрезах позволяет сделать вывод, что эта ассоциация представлена относительно чистыми разностями зеленых гидротермальных глин (см. табл. 42, 43 и рис. 80). Последние сложены неупорядоченной смешаннослойной фазой Fe-слюда (селадонит) – Fe-смектит (нонтронит), присутствующих в переменных пропорциях (см. предыдущий раздел). Обращает на себя внимание, что относительно высокие величины факторных значений (>0,75) данной ассоциации наблюдаются преимущественно в верхней части разрезов плейстоценовых отложений тех скважин, которые пробурены на вершинах и склонах гидротермальных холмов.

Ассоциация IB (-): TiO<sub>2</sub> (-0,32), Al<sub>2</sub>O<sub>3</sub> (-0,36), MnO (-0,48), CaO (-0,82), SrO (-0,71). Данная ассоциация является антиподом предыдущей (см. табл. 42 и 43). Она представлена глинистыми карбонатными пелагическими илами. Как отмечалось в предыдущем разделе, глинистые компоненты этих илов слагаются монтмориллонит-иллитовыми разностями. Весьма примечательно наличие в составе ассоциации

| Компонент                      | Факторные нагрузки после<br>вращения |           |           | Компонент                 | Факторные нагрузки после<br>вращения |           |            |
|--------------------------------|--------------------------------------|-----------|-----------|---------------------------|--------------------------------------|-----------|------------|
|                                | Фактор I                             | Фактор II | Фактор!!! |                           | Фактор І                             | Фактор II | Фактор III |
| SiO <sub>2</sub>               | 0,92                                 | 0,12      | - 0,12    | Na <sub>2</sub> O         | 0,53                                 | 0,71      | 0,07       |
| TiO                            | -0,32                                | 0,90      | 0,04      | K, O                      | <b>0,9</b> 6                         | 0,07      | 0,002      |
| Al <sub>2</sub> O <sub>3</sub> | -0,36                                | 0,90      | 0,05      | BaO                       | 0,06                                 | 0,63      | 0,15       |
| Fe, O,                         | 0,94                                 | -0,13     | 0,05      | SrO                       | 0,71                                 | 0,16      | 0,26       |
| MnO                            | 0,48                                 | 0,02      | 0,75      |                           |                                      |           |            |
| MgO                            | 0,91                                 | 0,05      | 0,05      |                           |                                      |           |            |
| CaO                            | -0,82                                | 0,16      | 0,25      | BKORD B AMC-              |                                      |           |            |
| P205                           | 0,11                                 | 0,51      | 0,64      | персию, %                 | 47,15                                | 24,50     | 7,08       |
|                                |                                      |           |           | Суммарная<br>дисперсия, % | 47,15                                | 71,65     | 5 78,73    |

Таблица 42

Результаты факторного анализа химических компонентов отложений верхнего кайнозол скв. 506, 506С, 507D, 507F, 507H, 509B
Таблица 43 Распредаление значений факторов для химических компонентов в разрезе отложений верхнего кайнозоя скв. 506, 506С, 507D, 507F, 507H, 509B

|                        | W 0.50      | Факторные значения после вращения |           |                           |  |  |
|------------------------|-------------|-----------------------------------|-----------|---------------------------|--|--|
| <b>№</b> СК <b>В</b> . | Nº OOD.     | Фактор і                          | Фактор II | Фактор III                |  |  |
| 1                      | 2           | 3                                 | 4         | 5                         |  |  |
| 507F                   | 1_1_18082   | ،<br>1,06                         | -0,89     | 0,10                      |  |  |
|                        | 2-2-80-82   | 1,45                              | -0,65     | -1,24                     |  |  |
|                        | 235355      | 1,30                              | 1,74      | -0,73                     |  |  |
|                        | 2-3-118-120 | 1,22                              | 2,19      | 0,29                      |  |  |
|                        | 3-1-68-70   | -0,08                             | 0,76      | 0,72                      |  |  |
|                        | 3-3-68-70   | 0,34                              | 0,51      | 0,43                      |  |  |
|                        | 4-3-71-73   | -0,93                             | -0,01     | 0,33                      |  |  |
|                        | 5-2-75-77   | -0,92                             | 0,10      | 0,11                      |  |  |
|                        | 6-2-75-77   | -0,93                             | 0,07      | -0,18                     |  |  |
|                        | 7-1-70-72   | -1,10                             | -0,07     | -0,22                     |  |  |
|                        | 7-2-70-72   | 0,79                              | 0,45      | 0,50                      |  |  |
|                        | 7-3-70-72   | -0,48                             | 0,82      | 0,35                      |  |  |
|                        | 8-1-70-72   | 0,27                              | -0,70     | 0,92                      |  |  |
|                        | 9-1-20-22   | -1,08                             | 0,91      | 0,27                      |  |  |
| 506C                   | 4-1-105-107 | 1.55                              | -1.85     | -0.32                     |  |  |
|                        | 4-2-41-43   | 1.23                              | 1.53      | -0.07                     |  |  |
|                        | 4-3-61-63   | 1.81                              | -1.04     | -0.64                     |  |  |
|                        | 5-1-122-124 | -0.18                             | -0.12     | -0.20                     |  |  |
|                        | 5-2-113-115 | -0.60                             | 0.01      | -0.92                     |  |  |
|                        | 5_3_112_114 | _0.30                             | 0.73      | _0 72                     |  |  |
|                        | 6_1_80_82   | -0.59                             | 0.36      | 0.21                      |  |  |
|                        | 6-2-80-82   | _1.04                             | _0 14     | _0 12                     |  |  |
|                        | 6-3-80-82   | -0.85                             | _0.13     | _0.80                     |  |  |
|                        | 7_1_114_116 | -0,00                             | -0,02     | -0,00                     |  |  |
|                        | 8_1_81_83   | 1.05                              | -1.06     | 0.80                      |  |  |
|                        | 8-2-24-26   | -0.17                             | 1.08      | 0.31                      |  |  |
| 508                    | 1 1 10 21   | 0.71                              | 0.05      | 1 91                      |  |  |
| 000                    | 2 4 96 99   | 0,71                              | -0,05     | 0.61                      |  |  |
|                        | 2-1-00-00   |                                   | -0,30     | 0,01                      |  |  |
|                        | 2-2-07-09   | 1 10                              | 1,00      | -0.03                     |  |  |
|                        | 3 7 67 65   | 1,10                              | 0.76      | -0,03                     |  |  |
|                        | 3-2-03-05   | -0,37                             | -1.92     | _0.08                     |  |  |
|                        | 3 3 3 3 40  | 1/24                              | _0.07     | 0,0 <del>4</del><br>∴0.37 |  |  |
|                        | 4_1_77_70   | 1.20                              | 1.60      | -,0,07                    |  |  |
|                        | 4-2-110-112 | 0.92                              | 0.07      | 0.39                      |  |  |
|                        | 4_3_100_102 | 1 13                              | 1 52      | 0,00                      |  |  |
| 507H                   | 4_0_100_102 | 0,40                              | 0.40      | 0,07                      |  |  |
| 5U/M                   | 1-1-/9-81   | U,40<br>0.51                      | 0,48      | 0,15                      |  |  |
|                        | 1-2-79-81   | -0,51                             | 0,44      | 0,26                      |  |  |
|                        | 2-1-/9-81   | -0,32                             | 0,74      | 0,04                      |  |  |
|                        | 2-2-79-81   | -0,35                             | 0,85      | 0,51                      |  |  |
|                        | 2-3-79-81   | 0,60                              | 0,55      | -0,16                     |  |  |
|                        | 3-1-48-50   | -0,38                             | 0,73      | -0,11                     |  |  |
|                        | 3-2-48-50   | 0,14                              | 1,11      | 0,48                      |  |  |
|                        | 4-1-00-02   | 0,82                              | -0,29     | -0,09                     |  |  |
|                        | 4-3-00-02   | -0,03                             | -0,51     | -0,10                     |  |  |
|                        | 5-1-110-112 | 0,79                              | 0,29      | -0,66                     |  |  |
|                        | 5-2-110-112 | -0,67                             | 0,21      | -0,05                     |  |  |
| -                      | 5-3-110-112 | -1,02                             | -0,09     | 0,61                      |  |  |
|                        | 6-1-/9-81   | -1,19                             | -0,35     | -0,58                     |  |  |
|                        | 6-2-79-81   | -1,08                             | -0,06     | -0,89                     |  |  |
|                        | 6-3-/9-81   | -0,68                             | 0,38      | -0,15                     |  |  |
|                        | 7-1-79-81   | -1,42                             | 0,38      | -2,69                     |  |  |
|                        | /2/981      | -0,36                             | 0,67      | 0,23                      |  |  |
|                        | /_3_/9_81   | -0,64                             | 0,52      | -0,47                     |  |  |

| т | a | б | л | и | ш | a | 43       | (окончание)   |
|---|---|---|---|---|---|---|----------|---------------|
|   | • | • |   |   | - | • | <b>~</b> | IO KON JOHNE/ |

| 1    | 2           | 3     | 4     | 5     |
|------|-------------|-------|-------|-------|
| 507H | 0 1 00 00   | 0.89  | .0.11 | -0.37 |
|      | 8-1-60-62   | -0,03 | -0.27 | 0.11  |
| 5070 | 8-2-00-02   | -012  | 0.46  | 2 45  |
| 50/0 | 1-1-39-41   | -0,13 | _0.30 | 0.47  |
|      | 2-1-30-32   | 1 23  | 2 01  | -0.24 |
|      | 3_1_80_82   | 1.66  | 0.14  | -0.13 |
|      | 3_2_85-87   | 1.11  | 2.29  | -0.20 |
|      | 3-3-21-23   | 1.62  | -0.82 | 0,75  |
|      | 4-1-62-64   | 1,65  | -2,56 | 0,96  |
|      | 4-2-45-47   | 2,20  | 0,07  | -0,05 |
|      | 4-3-49-51   | 1,59  | 0,99  | 0,81  |
|      | 5-1-78-80   | 1,13  | 2,16  | 0,79  |
|      | 5-2-82-84   | 0,37  | 0,38  | 0,47  |
|      | 5-3-28-30   | 1,30  | -0,36 | -3,36 |
|      | 6-1-12-14   | 1,38  | 1,04  | -0,11 |
|      | 6-2-43-45   | 0,94  | 1,52  | 0,11  |
|      | 6-3-101-103 | -0,12 | -0,11 | 0,19  |
|      | 7-1-84-86   | 0,22  | -0,15 | 0,00  |
|      | 7-2-134-136 | 0,59  | -0,41 | 0,52  |
|      | /-3-131-133 | 0,54  | -0,95 | 0,07  |
|      | 8-1-//-/9   | -0.72 | _1 41 | 0,42  |
|      | 8-2-07-09   | -0,72 | 0.37  | -0.14 |
|      | 9-1-70-73   | -0.83 | -0.71 | -0.23 |
|      | 9-2-70-73   | -1.48 | -1.08 | -1.22 |
|      | 9-3-70-73   | -1.24 | -0,91 | -0,29 |
|      | 10-1-95-98  | -1,15 | -0,59 | 1,07  |
| 509B | 1-1-65-67   | -0,25 | 0.30  | 2,47  |
| 0000 | 1-2-65-67   | -0.41 | -1,45 | 4,26  |
|      | 2-1-52-54   | 1,14  | -2,12 | 1,29  |
|      | 2-2-57-59   | 1,07  | 1,29  | -0,47 |
|      | 2-3-80-82   | -0,68 | 0,43  | 0,25  |
|      | 3-1-58-60   | 0,78  | -1,06 | 3,32  |
|      | 3-2-129-131 | 1,18  | 1,75  | 1,25  |
|      | 3-3-27-29   | 1,39  | -1,49 | 0,52  |
|      | 4-1-103-105 | 1,53  | -2,86 | -0,09 |
|      | 42-23-25    | 1,24  | -1,45 | -2,/1 |
|      | 4-3-18-20   | 1,30  | -1,10 | -0,05 |
|      | 5-1-06-70   | -1.05 | _0.76 | 0,73  |
|      | 5-2-00-07   | -013  | _0.20 | 1 91  |
|      | 6-1-68-70   | -0.87 | -0.12 | -0.12 |
|      | 6-2-51-53   | -1.06 | 0.06  | 0.20  |
|      | 6-3-68-70   | -1,25 | -0,47 | -2,04 |
|      | 7_1_80_82   | -1.46 | -0.68 | -0.29 |
|      | 7-2-80-82   | -1.00 | -0.18 | 0.01  |
|      | 7-3-80-82   | -1.19 | -0.18 | -0,52 |
|      | 8-1-98-100  | -0.50 | 0,50  | 0,04  |
|      | 8-3-58-60   | -0,56 | 0,61  | 0,07  |
|      |             | •     | •     | ·     |

Мп и Sr, что может быть истолковано как свидетельство об относительно ранней низкотемпературной активности, отразившейся в карбонатной седиментации данного района. Подчеркнем, что фораминиферовые наннофоссилиевые илы существенно обогащены Mn и Sr по сравнению со средним составом карбонатных осадков океана. Уместно отметить, что в настоящее время в придонных водах этого района наблюдаются относительно высокие концентрации гидротермального Mn [Weiss, 1977;



Рис. 80. Стратиграфическое распределение факторных значений ассоциаций IA (+) (зеленые гидротермальные глины, сложенные смешаннослойной фазой селадонит—нонтронит) в разрезах плейстоценовых отложений скважин 70-го рейса

Факторные значения: 1 - < 0,25; 2 - 0,25 - 0,50; 3 - 0,50 - 0,75; 4 - 0,75 - 1,00; 5 - >1,00. Литология — см. на рис. 62

Klinkhammer et al., 1977]. Сравнительно высокие величины факторных значений отмечаются в нижней части разрезов скважин, пробуренных преимущественно на некотором удалении от разломных зон, трассируемых гидротермальными холмами либо хребтами (см. рис. 81). Именно в этих интервалах разрезов пользуются наибольшим развитием относительно малоизмененные слабоглинистые карбонатные пелагические илы.

Ассоциация IIA (+): SiO<sub>2</sub> (0,12), TiO<sub>2</sub> (0,90), AI<sub>2</sub>O<sub>3</sub> (0,90), CaO (0,16), P<sub>2</sub>O<sub>5</sub> (0,51), Na<sub>2</sub>O (0,71), BaO (0,63), SrO (0,16). В составе ассоциации обращают на себя внимание компоненты с относительно высокими величинами факторных нагрузок (> 0,5): TiO<sub>2</sub>-AI<sub>2</sub>O<sub>3</sub>-P<sub>2</sub>O<sub>5</sub>-Na<sub>2</sub>O-BaO. Набор этих компонентов и особенности их распространения в разрезах изученных скважин (см. рис. 82) позволяют считать, что данная группировка представлена остаточным от растворения алюмосиликатным, преимущественно глинистым веществом, образовавшимся при взаимодействии гидротермальных растворов с глинистыми карбонатными пелагическими илами. Если TiO<sub>2</sub>, AI<sub>2</sub>O<sub>3</sub> и P<sub>2</sub>O<sub>5</sub> можно рассматривать как собственно остаточные составляющие, то ВаО является гидротермальным компонентом, привнесенным и связанным с образовавшимся алюмосиликатным веществом.

Максимальное развитие данной группировки наблюдается в верхней части разреза, в интервалах, соответствующих накоплению зеленых гидротермальных глин (см.



рис. 82, скв. 506, 506С, 507D, 507F и 509В), либо в эквивалентных интервалах разрезов, сложенных глинистыми карбонатными илами (см. рис. 82, скв. 507H). Менее выражен базальтый интервал распространения данной группировки, развитый на границе с базальтовым основанием (см. рис. 82, скв. 506, 506С, 507D и 507F). Подобный характер распространения данной группировки компонентов в разрезе свидетельствует об этапах гидротермальной активности: 1) раннем и относительно низкотемпературном, ограниченно проявившемся в нижней части отложений позднего плейстоцена и, как правило, не сопровождавшемся накоплением зеленых (селадонит-нонтронитовых) гидротермальных глин; 2) позднем, относительно высокотемпературном, широкого регионального развития, маркирующемся накоплением зеленых гидротермальных глин.

Ассоциация IIB (--): Fe<sub>2</sub>O<sub>3</sub> (--0,13), K<sub>2</sub>O (--0,07). Данная группировка компонентов является антиподом рассмотренной выше ассоциации IIA (+). Низкие величины факторных нагрузок могут рассматриваться как свидетельство ее сравнительно слабого развития. Сопоставление данных по минералогии осадков с набором компонентов и особенностями их распространения позволяет считать, что ассоциация представлена выделениями гидроокислов Fe, имеющих двойственное происхождение: а) продуктов окисления зеленых гидротермальных глин селадонит-нонтронитового состава в относительно слабоокислительной обстановке, возможно, близ раздела осадок-вода



Рис. 81. Стратиграфическое распределение факторных значений ассоциации IB (--) (глинистые карбонатные пелагические илы) в разрезах плейстоценовых отложений скважин 70-го рейса

Факторные значения:1— <0,25; 2— 0,25—0,75; 3— >0,75 Литология— см. на рис. 62

и сульфидных образований карбонатных пелагических илов; б) гидроокислов Fe, выпадавших из остаточных гидротермальных растворов. Распространение сравнительно больших величин (> 0,75) факторных значений этой ассоциации, как правило, ограничено интервалами развития гидротермальных глин (см. табл. 43, скв. 506, 506С, 507D, 507F и 509B), в меньшей мере — базальными интервалами карбонатных осадков (см. табл. 43, скв. 507D и 507F).

Ассоциация IIIA (+): MnO (0,75), CaO (0,25), P<sub>2</sub>O<sub>5</sub> (0,64), BaO (0,15), SrO (0,26). Она представлена гидроокисными соединениями Mn, преимущественно тодорокитом (бузеритом), с которым тесно ассоциируют фосфаты и такие катионы, как Ca, Ba, Sr (см. табл. 42 и 43). В разрезах относительно большие величины факторых значений распространены сравнительно неравномерно (см. рис. 83). В скв. 506 и 507 они соответствуют интервалам накопления корковидных гидроокислов Mn, развитых в кровле пачек зеленых гидротермальных глин обычно близ поверхности раздела осадок—придонная вода. В разрезе 509В три интервала с высокими (> 0,75) величинами факторных значений наблюдаются в верхней половине осадков позднего



лейстоцена, как правило, среди накоплений гидротермальных зеленых глин (см. ис. 83). Обращают на себя внимание повышенные величины факторных значений базальной части разрезов скв. 506С и 507F (см. рис. 83), что наряду с другими анными может свидетельствовать о начальных низкотемпературных проявлениях идротермальной активности. Важно отметить, что, как свидетельствуют результаты риродных наблюдений и данные экспериментальных исследований [Dymond et al., 980; Hekinian et al., 1980; Hoffert et al., 1980; Varientsov, 1971; Варенцов, 1980; аренцов, Степанец, 1970], аккумуляция гидроокислов Mn происходит в обстановке тносительно низких температур, как правило, в заключительные фазы гидротермалього осаждения.

# ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ (АСПЕКТЫ ГЕОХИМИИ ПРОЦЕССОВ ГИДРОТЕРМАЛЬНОГО МИНЕРАЛООБРАЗОВАНИЯ)

ыявленные при помощи факторного анализа парагенетические ассоциации компоненэв соответствуют, как отмечалось, реальным минеральным фазам, наблюдаемым в хледуемых отложениях (см. рис. 80—83). Особенности распределения этих ассоциаий в разрезах позволяют вскрыть динамику гидротермального минералообразования течение плейстоцена. Подчеркнем главные особенности этого процесса.



Рис. 82. Стратиграфическое распределение факторных значений ассоциации IIA (+) (остаточное от гидротермального растворения элюмосиликатное, преимущественно глинистое вещество) в разрезах плейстоценовых отложений скважин 70-го рейса

Литология — см. на рис. 62, остальные условные обозначения — на рис. 81

1. Зеленые гидротермальные глины, сложенные смешаннослойной фазой селадонитнонтронит (факторная ассоциация IA (+)), являются наиболее выраженными гидротермальными продуктами, фиксирующими относительно высокотемпературную стадию процесса. Подчеркнем, что главными компонентами являются SiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, MgO и K<sub>2</sub>O. Примечательно отсутствие Al<sub>2</sub>O<sub>3</sub> и TiO<sub>2</sub>. Наибольшее развитие этой группировки компонентов наблюдается в верхней части отложений позднего плейстоцена околоразломных участков, проявляющихся в рельефе в виде гидротермальных холмов (см. рис. 80; скв. 506, 506C, 507D и 509B). Однако ранние проявления гидротермального минералообразования отмечаются в нижней части отложений позднего плейстоцена, близ контакта с базальтовым основанием (см. рис. 80, скв. 506C). Прерывистый, пульсационный характер поступления высокожелезистых гидротермальных растворов можно допустить и для разреза скв. 509B (см. рис. 80), где высокие величины факторных значений рассматриваемой ассоциации характерны для трех интервалов.

2. Гидроокислы Mn и связанные с ними компоненты (P<sub>2</sub>O<sub>5</sub>, CaO, BaO и SrO), встречающиеся в виде корковидных образований и выделений (тодорокит), являются относительно низкотемпературными продуктами гидротермального минералообразования (ассоциация IIIA (+)). Их распространение локализовано самой верхней частью гидро-210



термальных накоплений, близ контакта осадок—придонная вода (см. рис. 83, скв. 506, 507D и 509B). Вместе с тем наблюдаются относительно ранние проявления этой ассоциации в нижних частях разрезов, близ контакта с базальтовым основанием (см. рис. 83, скв. 506C и 507F). Приведенные данные могут быть истолкованы как свидетельство о том, что относительно низкотемпературное минералообразование происходило как на ранних этапах гидротермальной активности, так и в ее заключительные стадии, когда гидроокислы Mn отлагались из остаточных порций гидротермальных растворов.

3. Чрезвычайно важным для изучения развития гидротермального минералообразования является оценка состава и особенностей распространения остаточных продуктов, формирующихся в результате взаимодействия гидротермальных растворов и слабоглинистых кремнистых карбонатных пелагических илов. Сам факт такого взаимодействия очевиден: под микроскопом наблюдаются остатки кремнистых скелетов диатомей и радиолярий, замещенные зеленым глинистым веществом. Кроме того, показателем подобных процессов могут быть относительно повышенные значения отношения AI/ (Fe + Mg + AI), как правило, превышающие 0,01-0,1. Парагенетическая ассоциация IIA (+), в составе которой существенными компонентами (величины факторных нагрузок более 0,50) являются TiO<sub>2</sub>, AI<sub>2</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>, Na<sub>2</sub>O и BaO, представлена остаточными карбонатными пелагическими илами (см. табл. 42 и 43, рис. 82). Распространение рассматриваемой группировки (см. рис. 82) по существу обобщенно отражает развитие минеральных продуктов гидротермального происхождения, как высоко-, так и низко-



Рис. 83. Стратиграфическое распределение факторных значений ассоциаций IIIA (+) (гидроокислы марганца, преимущественно тодорокит (бузерит) в разрезах плейстоценовых отложений скважин 70-го рейса

Литология — см. на рис. 62, остальные условные обозначения — на рис. 81

температурных (см. ассоциация IA (+) и IIIA (+) на рис. 80 и 83). Вместе с тем распространение ассоциации IIA (+) с определенностью свидетельствует об относительной региональной выдержанности двух основных этапов гидротермальной деятельности в данном районе: 1) в нижней части отложений позднего плейстоцена и 2) в верхней части отложений позднего плейстоцена (см. рис. 82).

\* \* \*

В результате обработки данных химического анализа по программе факторного анализа выявлены парагенетические ассоциации компонентов. Интерпретация этих факторных группировок в контексте данных по минералогии и литологии плейстоценовых отложений позволяет считать, что выявленные ассоциации соответствуют реальным минеральным фазам либо специфическим формам нахождения компонентов. Распространение этих парагенетических ассоциаций в разрезах свидетельствует о том, что процесс гидротермального минералообразования протекал в два этапа: 1) начальный (ранняя часть позднего плейстоцена), относительно низкотемпературный и 2) главный



(поздняя часть позднего плейстоцена), относительно высокотемпературный. Зеленые глины (смешаннослойная фаза селадонит-нонтронит), соответствующие факторной ассоциации IA (+), формировались преимущественно в течение главного этапа. Гидроокислы Mn и связанные компоненты (Ca, Ba, Sr и P) — ассоциация IIIA (+) — накапливались главным образом на раннем этапе и в конце главного из относительно низкотемпературных остаточных гидротермальных растворов после отделения Fe и связанных компонентов. Особенности распространения остаточных продуктов, образовавшихся в результате взаимодействия гидротермальных растворов с глинисто-кремнистыми карбонатными пелагическими осадками, подчеркивают двухэтапность гидротермальноть.

Балашов Ю.А. Гюхимия редкоземельных элементов. М.: Наука, 1976. 267 с.

- Безруков П.Л., Романкевич Е.А. Скорости осадконакопления в Тихом океене. - В кн.: Тихий океан. Осадкообразование в Тихом океане. М.: Наука, кн. 2, с. 288-300.
- Беренштейн Л.Е., Масолович Н.С., Coveeaнов В.Г., Остроумов Г.В. Методологический контроль качества в аналитической работе. - В кн.: Методологические основы исследования химического состава пород, руд и минерелов. М.: Недра, 1979, с. 23-118.
- Богденов Ю.А., Чеховских Е.М. Скорости накопления и абсолютные массы. - В кн.: Металлоносные осадки юго-восточной части Тихого океена. М.: Наука, 1979, с. 110-121.
- Боголюбова Л.И., Тимофеев П.П., Пронин С.В. Микрокомпонентный состав органического вещества "черных сланцев" Бискайского залива и их нефтегазоматеринский потенциал. - В кн.: Накопление и преобразование седикахитов. М.: Наука, 1979, с. 18-37.
- Бутузова Г.Ю., Дриц В.А., Лисицына Н.А. и др. Динамика формирования глинистых минералов в рудоносных осадках впадин Ат-Красного моря. - Литология лантис II и полез. ископаемые, 1979, № 1, с. 30-42.
- Веренцов И.М. Металлоносные осадки Северной Атлантики (геохимия, особенности формирования). - В кн.: Морская геология, садиментология, осадочная петрография и геология океана. Л.: Недра, 1980, с. 29-42. (Междунар, геол. конгр. 26-я сес. Докл. сов. геологов).
- Варенцов И.М., Блажчишин А.И. Железо-марганцевые конкреции. - В кн.: Геология Балтийского моря. Вильнюс: Мокслас, 1976, c. 307-348.
- Варенцов И.М., Степанец М.И. Эксперименты по модели розанию процессов выщелачива- «Andel T.H. van, Moore T.C., jun. Cenozoic calcium ния марганца морской водой из вулканических материалов основного состава. --Докл. АН СССР, 1970, т. 190, № 3, с. 679— 682.
- Вернадский В.И. Океанография и геохимия. Избр. соч. М.: Изд-во АН СССР, 1960, Т. 5. 422 c.
- Дриц В.А., Сахаров Б.А. Рентгеноструктурный анализ смешаннослойных минералов. М.: Наука, 1976. 256 с. (Труды/ГИН АН СССР; Вып. 295).
- Зеягин Б.Б. Электроногрефия и структурная кристаллография глинистых минералов. М.: Наука, 1964, 282 с.
- Золотерев Б.П. Петрология базальтов современ-

ного океана в связи с их тектонической позицией. — Геотектоника, 1979, № 1, с. 22—35.

- Лисицын А.П. Осадкообразование в океанах. М.: Наука, 1974. 438 с.
- Лисицын А.П. Процессы океанской седиментации: Литология и геохимин. М.: Наука, 1978, 392 c.
- Проблемы литологии Мирового океана: Литология и геохимия Тихого океана/П.П. Тимофеев, М.А. Ратеев, Н.В. Ренгартен и др. -М.: Наука, 1983. 216 с. (Труды/ГИН АН СССР; Вып. 387).
- Ципурский С.И., Дриц В.А., Чекин С.С. Выявление структурной упорядоченности нонтронитов электронографическим методом косых текстур. - Изв. АН СССР. Сер. геол., 1978, № 10, c. 105-113. Abbey S. Studies in "Standard samples" for use
- in the general analysis of silicate rocks and minerals. - Geostand. Newslett., 1980, vol. 4, p. 163-190.
- Andel T.H. van. Cenozoic migration of the Pacific Plate, northward shift of the axis of deposition, and paleobathymetry of the Central Equatorial Pacific. - Geology, 1974, vol. 2, p. 507-510.
- Andel T.H. van. Mesozoic/Cenozoic calcite compensation'depth and the global distribution of calcareous sediments. - Earth and Planet. Sci. Lett., 1975, vol. 26, p. 187-194.
- Andel T.H. van, Heath G.R., Moore T.C. Cenozoic history and paleooceanography of the Central Equatorial Pacific Ocean. - Geol. Soc. Amer. Mem., 1975, vol. 143, p. 1-134.
- Andel T.H., van, Heeth G.R., Moore T.C., jun. Cenozoic history of the Central Equatorial Pacific: A synthesis based on Deep Sea Drilling Project data. - In: The geophysics of the Pacific Ocean basin and its margin. Wash., 1976, p. 201-295.
- carbonate distribution and calcite compensation depth in the Central Equatorial Pacific Ocean. - Geology, 1974, vol. 2, N 2, p. 87-92.
- Arrhenius G. Pelagic sediments. In: The sea. N.Y.: Interscience, 1963, vol. 3, p. 655-727.
- Arrhenius G. Deep sea sedimentation: A critical review of US works. Trans. Amer. Geophys. Union, 1967, vol. 48, p. 604-631.
- Arthur M.A., Schlenger S.O. Cretaceous ocean anoxic events as caused factors in development of reef-reservoired giant oil fields. - Bull. Amer. Assoc. Petrol. Geol., 1979, vol. 63, N 6, p. 870-885.
- Bailey S.W., Brindley G.W., Kodama H., Martin R.T.

214

Report of the Clay Minerals Society Nomen-Committee for 1977 and 1978. clature Clays and Clay Miner., 1979, vol. 27, p. 238-239.

- Bender M.L., Broecker W., Gornitz V. et al. Geochemistry of three cores from the East Pacific Rise - Earth and Planet. Sci. Lett., 1971, vol. 12, p. 425-433.
- Bender M.L., Ku Teh-Lung, Broecker W.S. Accumulation rates of manganese in pelagic sediments and nodules. - Earth and Planet. Sci. Lett., 1970, vol. 8, p. 143–148.
- Berger W. Cenozoic sedimentation in the Eastern Tropical Pacific. - Bull. Geol. Soc. Amer., 1973, vol. 84, p. 1941-1954.
- Berggren W.A. The Pliocene time scale: Calibration of planktonic foraminiferal and cretaceous nannoplankton zones. - Nature, 1973, vol. 243, p. 391-397.
- Berggren W.A., Hollister C.D. Plate tectonics paleocirculation - commotion in the ocean. - Tecto- V Hamilton E.L. Sunken islands of the Mid-Pacific nophysics, 1977, vol. 38, N 1/2, p. 11-48.
- Buscaye P.E. Mineralogy and sedimentation of the deep-sea sediment fine fraction in the Atlantic Ocean and adjacent seas and oceans. - In: JGeochem, Techn. Rep. Vol. 8, Yale Univ., Dep. Geol., 1964.
- Bishoff J.L. Red Sea geothermal brine deposits: Their mineralogy, chemistry and genesis. -In: Brines and recent heavy metal deposits in the Red Sea. N.Y.: Springer Verlag, 1969, p. 368-406.
- Bishoff J.L., Dickson F.W. Seawater-basalt intera-ction at 200° C and 500 bars: Implication for origin of sea-floor heavy metal deposits and regulation of seawater chemistry. - Earth and Planet. Sci. Lett., 1975, vol. 25, p. 385-397.
- Boström K. The origin and fate of ferromanganoan active ridge sediments. — Stockholm.Contribs Geol., 1973, vol. 27, N 2, p. 149—243.
- Bostrom K., Kraemer T., Gartner S. Provenance and accumulation rates of opaline silica, AI, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. --Chem. Geol., 1973, vol. 11, p. 123-148.
- Buckley H.A., Bevan J.C., Brown K.M. et al. Glauconite and celadonite: Two separate mineral species. - Miner. Mag., 1978, vol. 42, p. 373-382.
- Corliss J.B., Lyle M., Dymond J. The chemistry of hydrothermal mounds near the Galapagos Rift. - Earth and Planet. Sci. Lett., 1978, vol. 40, p. 12-24.
- Davis J.C. Statistics and data analysis in geology. N.Y. etc.: J. Wiley and Sons, 1973.
- Donnelly Th.W. Secondarily modified sediments of the Eastern Pacific: Major-element geochemistry of Sites 420, 424, and 425 Deep Sea Drilling Project Leg 54. - In: Initial Reports of the DSDP. Wash., 1980, vol. 54, p. 329-338.
- Doyle P.S., Riedel W.R. Ichthyoliths at site 464 in the Northwest Pacific, Deep Sea Drilling Project, Leg 62. - In: Initial Reports of the DSDP. Wash., 1981, vol. 62, p. 491-494.
- Dymond J., Corliss J.B., Cobler R. et al. Composition and origin of sediments recovered by deep sea drilling of sediment mounds, Galapagos Spreading Center. - In: Initial Reports of the DSDP. Wash., 1980, vol. 54, p. 377-386.
- Amsterdam: Elsevier, 1975.
- Frakes L.A., Kemp E.M. Influence of continental positions on early Tertiary climates. - Nature, 1972, vol. 240, p. 97-100.

- Frakes L.A., Kemp E.M. Paleocene continental positions and evolution of climate. - In: Implications of continental drift to the Earth sciences. L .: Acad. press, 1973, vol. 1, p. 539-559.
- Frenzel G. The manganese ore minerals. In: Geology and geochemistry of manganese, Bp.: Akad. Kiadó, 1980, vol. 1. General problems (mineralogy, geochemistry, methods), p. 25-158.
- Giovanoli R. On natural and synthetic manganese nodules. -- In: Geology and geochemistry of manganese. Bp.: Akad. Kiado, 1980, vol. 1. General problems (mineralogy, geochemistry, methods), p. 159-202.
- Green D.H., Ringwood A.E. The genesis of basaltic magmas. - Contribs Miner. and Petrol., 1967, vol. 15, p. 103-190.
- Grimm R.E. Clay mineralogy. N.Y.: Elsevier, 1953.
- Hall J.M., Robinson P.T. Deep crustal drilling in the North Atlantic Ocean. - Science, 1979, vol. 204, p. 573-586.
- Mountains. Geol. Soc. Amer. Mem., 1956, vol. 64, p. 1–91. Harman H.H. Modern factor analysis. Chicago: Univ.
- press, 1967. 474 p.
- Heezen B.C., Fischer A.G. et al. Site 44. In: Initial Reports of the DSDP. Wash., 1971, vol. 6, p. 17–39.
- Heezen B.C., Hoskins R.H., MacGregor I.D. et al. Diachronous deposits: A kinematic interpretation of the Post Jurassic sedimentary sequence of the Pacific Plate. - Nature, 1973, vol. 241, N 5384, p. 25-32.
  - Hekinian R., Rosendahl B., Natland J.H. Ocean crust geothermal process: A perspective from the vantage of Leg 54 drilling. - In: Initial Reports of the DSDP. Wash., 1980, vol. 54, p. 395-422.
  - Hinte J.E. van. A Cretaceous time scale. Bull. Amer. Assoc. Petrol. Geol., 1976, vol. 60, N 4, p. 498-516.
  - Hoffert M., Person A., Courtois C. et al. Sedimentology, mineralogy and geochemistry of hydrothermal deposits from holes 424, 424A, 424B and 424C (Galapagos Spreading Center). - In: Initial Reports of the DSDP. Wash., 1980, vol. 54, p. 339-376.
  - Humphris S.E., Hallman C.M. Chemistry of interstitial waters sampled during Leg 54. - In: Initial Reports of the DSDP. Wash., 1980, vol. 54, p. 387-393.
  - Initial Reports of the DSDP. Wash .: US Gov. print. off. Vol. 62, 1981, 1120 p.; Vol. 65, 1983. 752 p; Vol. 70. 1983.
  - Kerr P.F. Analytical data on reference clay minerals. N.Y.: Amer. Petrol. Inst. Columbia Univ., 1950. (Reference Clay Miner. Prelim. Rep.; N 7).
  - Kirkpatrick J. Interlaboratory comparison of Leg 46 basalt standards. - In: Initial Reports of the DSDP. Wash., 1979, vol. 46, p. 293-297.
  - Klinkhammer G., Bender M., Weiss R.F. Hydrothermal manganese in the Galapagos Rift. - Nature, 1977, vol. 269, N 5626, p. 319-320.
  - Kurnosov V.B., Hurdmae I.O., Kazakova V. et al. Mineralogy and inorganic geochemistry of sediments from mouth on the Gulf of California. - In: Initial Reports of the DSDP. Wash., 1983, vol. 65, p. 399-424.
- Eysinga F.W.B. van. Geological time table. 3rd. e. PLancelot Yv. Relations entre evolution sedimentaire et tectonique de la Plaque Pacifique depuis le Crétace inférieur. - Mém. Soc. géol. France, 1978, vol. 57, N 134, p. 40.
  - VLancelot Y., Larson R.L. Sedimentary and tectonic

evolution of the north-western Pacific. – In: Initial Reports of the DSDP. Wash., 1975, vol. 32, p. 925–939.

- Larson R.L. Late Jurassic and early Cretaceous evolution of the Western Central Pacific Ocean. – J. Geomagn. and Geoelec., 1976, vol. 28, p. 219– 236.
- Larson R.L., Hilde T.W.C. A reversal time scale of magnetic reversals for the Early Cretaceous and Late Jurassic. - J. Geophys. Res., 1975, vol. 80, p. 2586-2594.
- Larson R.L., Moberly R. et al. Site 313: Mid-Pacific mountains. – In: Initial Reports of the DSDP. Wash., 1975, vol. 32, p. 313–390.
  - Lonsdale R. Deep-tow observations at the mounds abyssal hydrothermal field, Galapagos Rift. – Earth and Planet. Sci. Lett., 1977, vol. 36, p. 92–110.
  - Luyendyk B.P., Forsyth D., Phillips J.D. Experimental approach to the paleocirculation of the oceanic surface waters. Bull. Geol. Soc. Amer., 1972, vol. 83, p. 2649–2664.
  - Lyle M. Estimation of hydrothermal manganese input to the oceans. — Geology, 1976, vol. 4, N 12, p. 733-736.
  - MacArthur J.M., Elderfield H. Metal accumulation rates in sediments from Mid-Indian Ocean Ridge and Marie Celeste Fracture zone. – Nature, 1977, vol. 266, N 5601, p. 437–439.
  - Mecdonald G.A. Composition and origin of Hawaiian Lavas. - Contribs. Hawaii Inst. Geophys. for the year, 1968, p. 477-522.
  - Mottl M.J., Holland H.D. Chemical exchange during hydrothermal alteration of baselt by seawater. I. Experimental results for major and minor components of seawater. – Geochim. et cosmochim. acta, 1978, vol. 42, p. 1103–1115.
  - Motti M.J., Holland H.D., Corr R.F. Chemical exchange during hydrothermal alteration of baselt by seswater. II. Experimental results for Fe, Mn and sulfur species. — Geochim. et cosmochim. acta, 1979, vol. 43, p. 869-884.
  - Pertsev N.N., Rusinov V.L. Mineral assemblages and processes of alteration in basalts at Deep Sea Drilling Project Sites 417 and 418. – In: Initial Reports of the DSDP. Wash., 1980, vol. 51/53, p. 1219–1242.
  - Phanerozoic time scale. Quart. J. Geol. Soc. London, 1964, vol. 120, p. 260–262.
  - Rateev M.A., Timofeev P.P., Rengarten N.V. Minerals of the clay fraction in Pliocene-Quaternary sediments of the east equatorial Pacific. - In: Initial Reports of the DSDP. Wash., 1980, vol. 54, p. 307-318.
  - Riley J.P., Chester R. Introduction to marine chemistry. L.: Academic, 1971. 421 p.
  - Rusinov V.L., Laputina I.P., Muravitskaja G.N. et al. Clay minerals in basalts from Deep Sea Drilling Project Sites 417 and 418. – In: Initial Reports of the DSDP. Wash., 1980, vol. 51/53, p. 1265–1271.

Schlanger S.O., Jenkyns H.C. Cretaceous oceanic anoxic events: causes and consequences. – Geol. mijnbouw, 1976, vol. 55, p. 179–184.

- Schrader E.L., Furbish W.J., Mettey D., May J.A. Geochemistry and carbonate petrology of selected sediment samples from Deep Sea Drilling Project Leg 54, Eastern Pacific. — In: Initial Reports of the DSDP. Wash., 1980, vol. 54, p. 319-328.
- Seyfried W.E., Bishoff J.L. Hydrothermal transport of heavy metals by seawater: The role of sea-

water/basalt ratio. — Earth and Planet. Sci. Lett., 1977, vol. 34, p. 71–77.

- Seyfried W.E., Mott/ M.J. Origin of submarine metalrich hydrothermal solutions: Experimental basalt--seawater interaction in a seawater-dominated system at 300°C, 500 bars. - In: Proc. 2nd Intern. Symp. water-rock interaction, Sect. 4. Stressbourg, 1977, p. 173-180.
- Shakleton N.J., Kennett J.P. Paleotemperature history of the Cenozoic and the initiation of Antarctic: glaciation: Oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. – In: Initial Reports of the DSDP. Wash., 1975a, vol. 29, p. 743–755.
- Shakleton N.J., Kennett J.P. Late Cenozoic oxygen and carbon isotopic changes at DSDP Site 284: Implications for glacial history of the Northern hemisphere and Antarctic. — In: Initial Reports of the DSDP. Wash., 1975b, vol. 29, p. 801–807.
- The X-ray identification and crystal structures of clay minerals. London, 1961.
- Tiercelin J.J., Faure H. Rates of sedimentation and vertical subsidence in neorifts and paleorifts. – In: Tectonics and geophysics of continental rifts. Moscow, Dordrecht, 1978, vol. 2, p. 41–47.
- Timofeev P.P., Bogoliubova L.I. Black shales of the bey of Biscay and conditions of their formation, DSDP Leg 48, Holes 400A, 402A. -- In: Initial Reports of the DSDP. Wash., 1979, vol. 48, p. 831-852.
- Timofeev P.P., Renngarten N.V., Rateev M.A. Petrology and mineralogy of pleistocene sediments overlying basement at the mouth of the Gulf of California, Deep Sea Drilling Project Leg 65. – In: Initiali Reports of the DSDP. Wash., 1983, vol. 65, p. 363–374.
- Turekien K.K., Wedepohl K.H. Distribution of the elements in some major units of the earth's crust. – Bull. Geol. Soc. Amer., 1961, vol. 72, N 2, p. 175–190.
- Varentsov I.M. On the leaching of manganese in the course of interaction of basic volcanic materials with sea water. — Soc. Mining Geol. Jap. Spec. Iss., 1971, vol. 3, p. 466—473.
- Varentsov J.M. The geochemistry of heavy metals in Upper Cenozoic sediments near the crest of the Mid-Atlantic Ridge, latitude 23°N, drilled on DSDP Leg 45. – In: Initial Reports of the DSDP. Wash., 1978, vol. 45, p. 349–377.
- Varentsov I.M. Geochemistry of transition metals in the processes of ferromanganese ore formation in Recent basins. – In: Geology and geochemistry of manganese. Bp.: Akad. Kiado, 1980. Vol. 1. General problems (mineralogy, geochemistry, methods), p. 367–387.
- Varentsov I.M., Sakharov B.A., Drits V.A. et al. Hydrothermal deposits of the Galapagos Rift Zone. Leg 70: mineralogy and geochemistry of major components. – In: Initial Reports of the DSDP. Wash., 1983, vol. 70, p. 235–268.
- Waish J.N. The simultaneous determination of the major, minor and trace constituents of silicate rocks using inducively coupled plasma spectrometry. - Spectrochim. acta B, 1980, vol. 33, p. 107-111.
- Weaver Ch.E., Pollard L.D. The chemistry of clay minerals. Amsterdam: Elsevier, 1973. 213 p. (Develop. Sedimentol.; N 15).
- Weiss R.F. Hydrothermal manganese in the deepsea: Scavenging residence time and Mn/<sup>3</sup> He relationships. — Earth and Planet. Sci. Lett., 1977, vol. 37, p. 257-262.

- Winterer E. Sedimentary facies and plate tectonics of Equatorial Pacific. – Bull. Amer. Assoc. Petrol. Geol., 1973, vol. 57, N 2, p. 265–282.
- Winterer E.L. Anomalies in the tectonic evolution of the Pacific. - Trans. Amer. Geophys. Union, 1976, vol. 19, p. 269-278.
- Winterer E.L., Ewing J.I. et al. Site 171. In: Initial Reports of the DSDP. Wash., 1973, vol. 17, p. 283–334.
- Wise W.S., Eugster H.P. Celadonite: synthesis, thermal stability and occurences. – Amer. Miner., 1964, vol. 49, p. 1031–1083.
- X-ray identification and crystal structures of clay minerals. London, 1951.
- Zolotarev B.P., Choporov D.Y. Petrochemistry of basalts D/V "Giomar Challenger", Leg 45, Holes 395, 395A and 396. – In: Initial Reports of the DSDP. Wash., 1978, vol. 45, p. 479–492
- Zolotarev B.P., Choporov D.Y., Voitov G.I. Petrochemistry of basalts and distribution of organic gases: Holes 407, 408, 409, 410A, 411, 412 and 413, DSDP Leg 49. – In: Initial Reports of the DSDP. Wash., 1979, vol. 49, p. 727-744.

## ОГЛАВЛЕНИЕ

| Предисловие (Л.П. Тимофеев)                                                                                                                               | 3  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Глава I                                                                                                                                                   |    |
| Минералогия и геохимия постюрских отложений центральной области северо-западной части<br>Тихого океана (рейс 62-й)                                        | 7  |
| Геохимическая история постюрской седиментации в западных районах подводных гор Мар-<br>кус-Неккер, скв. 463 (И.М. Варенцов, П.П. Тимофеев, М.А. Ратеев)   | 7  |
| Геохимическая история постюрской седиментации в северном районе возвышенности лесса,<br>скв. 464 (И.М. Варенцов, Б.А. Сахарое, М.А. Ратеев, Д.Я. Чопоров) | 36 |
| ска. 465, 465А (И.М. Веренцое).                                                                                                                           | 53 |
| ска. 466 (И.М. Варенцов)                                                                                                                                  | 73 |
| ции постюрской седиментации центральной области северо-западной части Тихого окезна ( <i>И.М. Варенцое</i> )                                              | 89 |
| <b>F</b>                                                                                                                                                  |    |

#### Глава II

| Литология, минералогия осадочного чехла и геохимия базальтов Калифорнийского залива    |     |
|----------------------------------------------------------------------------------------|-----|
| (рейс 65-й)                                                                            | 141 |
| Литология и минералогия плейстоценовых отложений устья Калифорнийского залива          |     |
| (П.П. Тимофеев, Н.В. Ренгартен, Л.И. Боголюбова, М.А. Ратеев, В.В. Еремеев)            | 141 |
| Геохимия базальтов Калифорнийского залива и распределение в них редкоземельных элемен- | •   |
| тов (Б.П. Золотарев)                                                                   | 154 |

#### Глава III

| Минералогия и геохимия гидротермальных отложений зоны Галапагосского рифта (рейс 70-й)                                                                                                                                                                                                                                                                                                  | 173        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Гидротермальные отложения зоны Галапагосского рифта: аспекты минералогии и геохимии<br>главных компонентов (И.М. Варенцов, Б.А. Сахарое, В.А. Дриц, С.И. Цилурский, Д.Я. Чоло-<br>рое, В.А. Александрова)<br>Геохимические ассоциации главных компонентов, Ва и Sr как индикаторы процессов осадко-<br>образования: гидротермальные отложения зоны Галапагосского рифта (И.М. Варенцов) | 173<br>202 |
| Литература                                                                                                                                                                                                                                                                                                                                                                              | 214        |
| Обълснония к таблицам I-VIII                                                                                                                                                                                                                                                                                                                                                            | 218        |

#### CONTENTS

| Preface (P.P. Timofeev)                                                                                                                                                                                                                                                                          | 3   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| Chapter I                                                                                                                                                                                                                                                                                        |     |  |  |
| Mineralogy and geochemistry of post-Jurassic sedimentation in the Central Northwestern Pacific<br>(DSDP Leg 62)                                                                                                                                                                                  | 7   |  |  |
| Geochemical history of post-Jurassic sedimentation in Western Mid-Pacific Mountains, site 463 ( <i>J.M. Varentsov, P.P. Timofeev, M.A. Rateev</i> ).<br>Geochemical history of post-Jurassic sedimentation in Nortern Hess Rise, site 464 ( <i>J.M. Varentsov, R.A. Steharov, M.A. Rateev</i> ). | 7   |  |  |
| Geochemical history of post-Jurassic sedimentation in Southern Hess Rise, site 465 (holes 465, 465 A) (I.M. Varentsov).                                                                                                                                                                          | 53  |  |  |
| Geochemical history of post-Jurassic sedimentation in Southern Hess Rise, site 466 (I.M. Varentsov)<br>Assemblages of the major components and heavy metals as indicators of geochemical evolution of                                                                                            | 73  |  |  |
| post-Jurassic sedimentation in the Central Northwestern Pacific (I.M. Varentsov)                                                                                                                                                                                                                 | 89  |  |  |
| Chapter II                                                                                                                                                                                                                                                                                       |     |  |  |
| Litology, mineralogy of deposits and geochemistry of baselts of the Bay of California (DSDP Leg 65).<br>Lithology and mineralogy of the Pleistocene sediments of the mouth of the Bay of California (P.P. Ti-                                                                                    | 141 |  |  |
| mofeev, N.V. Renngarten, L.I. Bogolyubova, M.A. Ratsev, V.V. Eremeev)                                                                                                                                                                                                                            |     |  |  |
| /ev)                                                                                                                                                                                                                                                                                             | 154 |  |  |
| Chapter III                                                                                                                                                                                                                                                                                      |     |  |  |
| Mineralogy and geochemistry of hydrothermal deposits of the Galapagos Rift zone (DSDP Leg 70)<br>Hydrothermal deposits of the Galapagos Rift zone: mineralogy and geochemistry of major compo-<br>nents (I.M. Verentsov, B.A. Sakharov, V.A. Drits, S.I. Tsipursky, D.Ya. Choporov, V.A. Alek-   | 173 |  |  |
| sandrova).                                                                                                                                                                                                                                                                                       | 173 |  |  |
| hydrothermal deposits of the Galapagos Rift zone (I.M. Varentsov)                                                                                                                                                                                                                                | 202 |  |  |
| Bibliography                                                                                                                                                                                                                                                                                     | 214 |  |  |
| Explication to plates I-VIII                                                                                                                                                                                                                                                                     | 218 |  |  |

### В ИЗДАТЕЛЬСТВЕ "НАУКА" готовится к печати книга

#### БУДУЩЕЕ ГЕОЛОГИЧЕСКОЙ НАУКИ 19 л.

В книге рассмотрены основные проблемы современной теоретической геологии и главные перспективы ее развития. Особое внимание уделено проблемам геологии океанов, ранних стадий развития Земли, петрологии, литологии, проблемам физики тектонических процессов и стратиграфии, а также истории некоторых аспектов методологии геологической науки. Авторы — ученые академий наук социалистических стран. Для геологов, петрологов, литологов, стратиграфов, тектонистов.

