= геология =

УДК 551.24:549.1(571.121)

СТРУКТУРЫ РАСПАДА ХРОМШПИНЕЛИДОВ КАК КРИТЕРИЙ ВЗАИМОДЕЙСТВИЯ РЕСТИТОВ С БАЗИТОВЫМ РАСПЛАВОМ (ВОЙКАРО-СЫНЬИНСКИЙ ОФИОЛИТОВЫЙ МАССИВ, ПОЛЯРНЫЙ УРАЛ)

© 2003 г. А. А. Разумовский

Представлено академиком А.Л. Книппером 26.06.2002 г.

Поступило 17.06.2003 г.

Работами многих исследователей показана сложность и многостадийность формирования офиолитовых разрезов. В ряде случаев одним из аспектов их формирования становятся процессы взаимодействия тектонизированных перидотитов с базитовыми расплавами. В частности, для Кемпирсайского массива показано, что в океанической литосфере породы реститового комплекса взаимодействовали с базитовым расплавом, просачивающимся из более глубинного источника. Этот процесс, помимо формирования многочисленных клинопироксенит-габбровых жильных тел, проявился в высокотемпературной амфиболизации гарцбургитов и в локальном формировании контрастных высокоглиноземистых кайм у хромшпинелидов [6]. Описаны случаи подобного взаимодействия, в результате которого образуются плагиоклазовые перидотиты с импрегнационными структурами и высокохромистыми шпинелидами ([9] и др.). Большинство исследователей сходятся на том, что появление источника базитового расплава связано со стадией формирования офиолитового разреза в надсубдукционной обстановке [6, 7]. В частности, на массиве Троодос результат смены геодинамической обстановки на надсубдукционную проявился не только в свидетельствах миграциии новообразованного базитового расплава, но и в формировании собственного реститового комплекса [8].

В большинстве случаев выводы о наличии мафического расплава, а также геодинамическая интерпретация обстановок, в которых происходило образование и развитие офиолитовых разрезов, производятся на основании изучения геохимических систем базит-ультрабазитовых комплексов [7, 8, 11]. В то же время опыт изучения хромшпинелидов показывает, что последние обладают, как правило, большей изменчивостью

Геологический институт

Российской Академии наук, Москва

состава по сравнению с породообразующими минералами гипербазитов, что позволяет использовать их при изучении вопросов формирования ультрамафитов. В данном же случае материалом для исследования послужили входящие в состав рудопроявления хромшпинелиды, важность понимания генезиса которых представляется очевидной.

В пределах Войкаро-Сыньиского офиолитового аллохтона хромитовое оруденение развито на всех уровнях разреза мантийных тектонитов в породах лерцолит-гарцбургитового и дунитгарцбургитового комплексов гарцбургитовой зоны, а также в верхней, дунитовой, зоне разреза (рис. 1). Вблизи контакта гарцбургитов с завершающими разрез ультрабазитовых тектонитов дунитами тела последних в гарцбургитах имеют либо линзовидную и плитообразную форму, либо развиты в виде жил, образующих штокверки. В целом хромитовые тела, приуроченные к дунит-гарцбургитовому комплексу, развиты в пределах апикальных частей крупных дунитовых тел, в штокверках дунитовых жил, сопровождающих крупные дунитовые тела, а также на периферии штокверков, среди гарцбургитов [5, 3].

Описываемое рудопроявление входит в Лабогейскую группу, оно расположено на южном склоне горы Ыджид-Лабахэйшор, вблизи контакта с краевыми дунитами, в гарцбургитах, в отсутствие крупных дунитовых тел, в поле развития многочисленных жил дунитов, диопсидитов, энстатититов и габбро. Рудные тела имеют форму шлиров, реже жил, протяженностью не более 10 м, мощностью около 1 м. Руды мелко-среднезернистые, густовкрапленные. В пределах рудопроявления в жилах энстатититов, образованных преимущественно крупно- и гигантозернистыми кристаллами, встречены многочисленные шлировидные и неправильной формы скопления хромшпинелида.

Акцессорная хромшпинель в гарцбургитах Войкаро-Сыньиского аллохтона представлена вариациями хромпикотита. Близким составом обладают

Рис. 1. Размещение хромитовых рудопроявлений в центральной и северной частях Войкаро-Сыньинского офиолитового аллохтона по [4, 5, 3], с дополнениями. *1* – дуниты, гарцбургиты, оливин-антигоритовые породы; 2 – габбро-нориты; *3* – пироксениты, верлиты; *4* – габбро-амфиболиты; *5* – метаморфизованные вулканогенно-осадочные породы; *6* – палеозойские вулканогенно-осадочные породы; 7 – рудопроявления хромитов; *8* – тектонические контакты: достоверные (а), предполагаемые (б); *9* – подошва аллохтона.

рудообразующие хромшпинелиды Лабогейского рудного поля, а также, соответственно, крупные хромитовые тела описываемого рудопроявления [3]. Шпинелиды, на данном рудопроявлении развитые в жилах и лентикулярных обособлениях энстатититов, отличаются от акцессорных в перидотитах и собственно рудообразующих существенно большими содержаниями Fe, Ti и меньшими Mg, Al и Cr. Проведенные исследования показали, что данные хромшпинелиды характеризуются наличием структур распада твердого раствора, которые образованы хроммагнетитовой фазой (I) и феррихромпикотитовой фазой (II) (табл. 1). Фаза I характеризуется высоким содержанием Fe, Ti, V и пониженным Mg, Al и Cr. II фаза при более низком содержании Fe, Ti и V отличается высоким Mg, Cr и Al. Собственно эвтектоидные структуры распада встречаются примерно в 30% случаев, а преобладают структуры выделения из твердого раствора фазы I в матрице II. При распаде образуется структура, подобная графической (рис. 2а). Участки с графической структурой разделены зонами взаимного угнетения, для которых характерно преобладание фазы II. В большинстве случаев в краевых частях зерен преобладает феррихромпикотит (II), характеризуя участки истощения твердого раствора хроммагнетитовой (I) фазой. Толщина ламеллей хроммагнетита составляет от 0.00n мм и больше, соотношение с длинной стороной – примерно 1/10.

Анализ эмпирических корреляционных связей катионов показывает, что для фазы I химическое сродство к Mg нарастает в ряду Cr, Al, Fe³⁺, типоморфен гомовалентный изоморфизм Fe–Al, Fe– Cr, с преобладанием последнего. Для фазы II гете-

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 2 2003

Компонент	Фаза I		Фаза II		Коррозионный хромшпинелид		
№ п/п	1	2	3	4	5	6	7
TiO ₂	2.62	3.17	0.68	1.14	1.58	1.74	2.06
$Al_2\bar{O}_3$	5.64	4.38	24.83	20.53	13.78	13.78	6.67
Cr_2O_3	23.54	20.28	28.55	27.28	30.45	28.47	28.41
$V_2 \overline{O}_3$	1.07	1.06	0.39	0.44	0.66	0.60	0.89
FeO	62.79	68.55	35.55	44.46	47.76	48.32	58.86
MnO	0.36	Не обн.	0.35	Не обн	Не обн.	0.44	Не обн.
MgO	3.43	2.04	8.99	5.65	5.77	6.01	2.68
NiÕ	0.55	0.52	0.66	0.50	Не обн.	0.64	0.43
ZnO	Не обн.	Не обн.	Не обн.				
$X_{\mathrm{Fe}^{3+}}$	0.52	0.59	0.18	0.24	0.30	0.33	0.43
$X_{\mathrm{Cr}^{^{3+}}}$	0.35	0.31	0.36	0.36	0.42	0.39	0.42
$X_{\mathrm{Al}^{3+}}$	0.13	0.10	0.46	0.40	0.28	0.28	0.15

Таблица 1. Химический состав фаз распада твердого раствора и хромшпинелидов коррозионного парагенезиса (наиболее представительные образцы)

Примечание. Сумма в анализах приведена к 100%. Все железо в виде FeO. Анализы выполнены на электронном микроскопе "CamScan" с энергодисперсионной приставкой Link (МГУ, кафедра Петрологии), аналитик Н.Н. Коротаева.

ровалентный изоморфизм не характерен, скольконибудь заметным сродством к Mg обладает лишь Cr, для трехвалентных катионов проявлен изоморфизм Fe–Al и существенно слабее Al–Cr.

Зерна со структурами распада корродируются парагенезисом серпентин–хлорит–хромшпинелид, при этом мелкие зерна замещаются нацело, а крупные агрегаты по краям и трещинам (рис. 2б). Состав новообразованной шпинели напрямую зависит от преобладания той или иной распадной фазы в замещаемой части зерна и имеет промежуточные составы (табл. 1). Образование коррозионного парагенезиса серпентин–хлорит–хромшпинелид связано с метаморфизмом при РТ-условиях зеленосланцевой фации [5]. Проявление коррозионного процесса характеризуется полистадийностью.

Литературный обзор показывает, что распадные структуры с составом фаз, аналогичным описанному, встречаются сравнительно редко. На Урале подобные образования отмечены в дунит-клинопироксенит-габбровых массивах Урало-Аляскинского типа, а именно в дунитах Тылайского Камня Кытлымского массива и в дунитах Уктусского массива [2]. Фигуративные точки составов распадных фаз (рис. 3) расположены конформно линии хромшпинелевого сольвуса, для которого, с учетом данных экспериментов, определена температура, составляющая примерно 800-900°С [10]. Для сравнения на диаграмме приведены (по литературным данным) поля составов акцессорных хромшпинелидов из дунитов Платиноносного пояса и из перидотитов Войкаро-Сыньинского массива. Расположение фигуративных точек на диаграмме позволяет оценить состав исходного субстрата, который при распаде мог дать установленные фазы. Редкость нахождения подобного минерала в природе связывается [2] с неустойчивостью, при сме-

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 2 2003

не условий обогащенного Al, Fe и Ti твердого раствора хромшпинелида.

Как уже было отмечено, процессы распада твердого раствора в рудных хромшпинелидах име-

Рис. 2. "Графическая" структура распада твердого раствора (а) и коррозия серпентин-хлорит-хромшпинелевым парагенезисом краевой части зерна хромшпинелида со структурами выделения из твердого раствора фазы (I) (б). В отраженном свете, николи не скрещ.

Рис. 3. Диаграмма Cr^{3+} – Al^{3+} – Fe^{3+} . l – Акцессорные хромшпинелиды из лерцолитов и гарцбургитов Войкаро-Сыньинского аллохтона [5]; 2 – акцессорные хромшпинелиды из дунитов Платиноносного пояса Урала [1]. 3 – линия сольвуса для хромшпинелидов расслоенного перидотит-габбрового массива Старе Ранско [12]; 4 – линия сольвуса для хромшпинелидов Кытлымского и Уктусского массивов [2]; 5 – составы фаз распада твердого раствора I – хроммагнетит, II – феррихромпикотит.

ют локальное развитие. Т.е. остальные рудопроявления из этого же рудного поля, а также крупные тела хромитов исследуемого рудопроявления заметно отличаются от описанных составом и не обнаруживают следов наличия распадных фаз. Возможным механизмом образования хромшпинелидов и, соответственно, вмещающих жил энстатититов могло быть их становление в результате взаимодействия с реститом просачивающегося сквозь него базитового расплава. В этом случае может быть обеспечена необходимая (800–900°С) температура процесса и его локальный характер, а также образование сопровождающих оруденение жил диопсидитов, энстатититов и габбро дискордантных минеральной полосчатости гарцбургитов.

На основании геохимического анализа элементов редких земель (REE), а также литофильных HFSE и LILE показано, что родоначальная магма для пироксенит-норитового и габбро-диабаз-троктолитового комплексов Войкарского массива формировалась в условиях надсубдукционного интрадугового бассейна [11]. Особенности изученных хромшпинелидов подтверждают вывод о сложности истории формирования данного офиолитового разреза в той его части, которая свидетельствует о наличии новообразованного источника базитового расплава, при сформировавшемся реститовом комплексе. Условия надсубдукционного интрадугового бассейна представляются наиболее вероятными для образования источника расплава, одним из продуктов которого явились описанные хромшпинелиды с хроммагнетит-феррихромпикотитовыми структурами распада. Из изложенного также следует, что гарцбургитовая часть разреза, вмещающая изученное рудопроявление, не является реститом субстрата, давшего при деплетировании надсубдукционные пироксенит-норитовый и габбро-диабаз-троктолитовый комплексы.

Работа выполнена при поддержке РФФИ (проекты 03-05-64142 и 03-05-06380).

СПИСОК ЛИТЕРАТУРЫ

- Иванов О.К., Рудашевский Н.С. В сб.: Минералы месторождений Урала. Свердловск, 1987. С. 16–35.
- 2. *Пушкарев Е.В.* Петрология Уктусского дунитклинопироксенит-габбрового массива (Средний Урал). Екатеринбург. УрО РАН, 2000. 296 с.
- Реестр хромитопроявлений в альпинотипных гипербазитах Урала. Пермь: КамНИИКИГС. 2000. 474 с.
- Савельева Г.Н. Габбро-ультрабазитовые комплексы офиолитов Урала и их аналоги в современной океанической коре. М.: Наука, 1987. 246 с.
- 5. *Савельева Г.Н., Савельев А.А. //* Геотектоника 1991. № 3. С. 47–58.
- Савельева Г.Н., Перцев А.Н. // Петрология. 1995. Т. 3. № 2. С. 115–132.
- Amelin Y.V., Ritsk E.Y., Neymark L.A. // Earth and Planet. Sci. Lett. 1997. V. 148. P. 299–316.
- Batanova V.G., Sobolev A.V. // Geol. 2000. V. 28. № 1. P. 55–58.
- 9. Evans C.A. // Geology. 1985. V. 13. P. 166–169.
- Sack R.O., Ghiorso M.S. // Amer. Miner. 1991. V. 76. P. 827 – 847.
- 11. Saveliev A.A., Sharaskin A.Ja., D'Orazio M. // Ofioliti. 1999. 24 (1). P. 21–30.
- Van der Veen H., Maaskant P. // Miner. deposita. 1995.
 V. 30. P. 397–407.